ageadjust.indirect: Age standardization by indirect method, with exact confidence...

Description Usage Arguments Details Value Note Author(s) References See Also Examples

Description

Calculates age standardized (adjusted) rates and "exact" confidence intervals using the indirect method

Usage

1
2
ageadjust.indirect(count, pop, stdcount, stdpop, stdrate = NULL,
conf.level = 0.95)

Arguments

count

vector of age-specific count of events

pop

vector of age-specific person-years or population estimates

stdcount

vector of age-specific standard counts

stdpop

vector of age-specific standarad population

stdrate

vector of age-specific standard rates

conf.level

confidence level (default = 0.95)

Details

To make valid comparisons between rates from different groups (e.g., geographic area, ethnicity), one must often adjust for differences in age distribution to remove the confounding affect of age. When the number of events or rates are very small (as is often the case for local area studies), the normal approximation method of calculating confidence intervals may give a negative number for the lower confidence limit. To avoid this common pitfall, one can approximate exact confidence intervals. This function implements this method (Anderson 1998).

Value

$sir

observed, expected, standardized incidence ratio, and confidence interval

$rate

crude.rate, adjusted rate, and confidence interval

Note

Visit https://repitools.wordpress.com/ for the latest

Author(s)

Tomas Aragon, aragon@berkeley.edu, http://www.phdata.science. Thanks to Giles Crane (giles.crane@doh.state.nj.us) for reporting error in 'ageadjust.indirect' function.

References

Anderson RN, Rosenberg HM. Age Standardization of Death Rates: Implementation of the Year 200 Standard. National Vital Statistics Reports; Vol 47 No. 3. Hyattsville, Maryland: National Center for Health Statistics. 1998, pp. 13-19. Available at http://www.cdc.gov/nchs/data/nvsr/nvsr47/nvs47_03.pdf.

Steve Selvin. Statistical Analysis of Epidemiologic Data (Monographs in Epidemiology and Biostatistics, V. 35), Oxford University Press; 3rd edition (May 1, 2004)

See Also

See also ageadjust.direct

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
##From Selvin (2004)
##enter data
dth60 <- c(141, 926, 1253, 1080, 1869, 4891, 14956, 30888,
41725, 26501, 5928)

pop60 <- c(1784033, 7065148, 15658730, 10482916, 9939972,
10563872, 9114202, 6850263, 4702482, 1874619, 330915)

dth40 <- c(45, 201, 320, 670, 1126, 3160, 9723, 17935,
22179, 13461, 2238)

pop40 <- c(906897, 3794573, 10003544, 10629526, 9465330,
8249558, 7294330, 5022499, 2920220, 1019504, 142532)

##calculate age-specific rates
rate60 <- dth60/pop60
rate40 <- dth40/pop40

#create array for display
tab <- array(c(dth60, pop60, round(rate60*100000,1), dth40, pop40,
round(rate40*100000,1)),c(11,3,2))
agelabs <- c("<1", "1-4", "5-14", "15-24", "25-34", "35-44", "45-54",
"55-64", "65-74", "75-84", "85+")
dimnames(tab) <- list(agelabs,c("Deaths", "Population", "Rate"),
c("1960", "1940"))
tab

##implement direct age standardization using 'ageadjust.direct'
dsr <- ageadjust.direct(count = dth40, pop = pop40, stdpop = pop60)
round(100000*dsr, 2) ##rate per 100,000 per year

##implement indirect age standardization using 'ageadjust.indirect'
isr <- ageadjust.indirect(count = dth40, pop = pop40,
                          stdcount = dth60, stdpop = pop60)
round(isr$sir, 2)         ##standarized incidence ratio
round(100000*isr$rate, 1) ##rate per 100,000 per year

epitools documentation built on March 26, 2020, 9:14 p.m.