Nothing
#' @title Deconvoluting Wastewater Data to Incidence
#' @description Function estimates incidence from smoothed data
#'
#' @param d Data frame. Wastewater dataframe. Must include at least `date`, time `t` and
#' `obs` columns.
#' @param fec List. Parameters for a single fecal shedding distribution, as generated by [sample_a_dist()].
#' @inheritParams estimate_R_ww
#' @template param-silent
#' @param RL.max.iter Integer. Maximum of iterations for the Richardson-Lucy deconvolution algorithm.
#'
#' @return Data frame with deconvoluted incidence
#'
#' @keywords internal
#'
deconv_ww_inc <- function(d, fec, scaling.factor, silent, RL.max.iter){
d$obs_scal = d$obs * scaling.factor
start_date = as.Date(dplyr::first(d$date))
f = get_discrete_dist(fec)
inc = deconvolution_RL(observed = d$obs_scal,
times = d$t,
p_delay = f,
verbose = !silent,
max_iter = RL.max.iter) |>
# Forces incidence to be a positive integer:
dplyr::mutate(
inc.deconvol = as.integer(ifelse(
RL_result>0, RL_result, 0))) |>
# Retrieve corresponding dates:
dplyr::rename(t = time) |>
dplyr::filter(t > 0) |>
dplyr::mutate(date = start_date + t)
res = list(
inc = inc,
ww.smooth = d,
fec = fec,
scaling.factor = scaling.factor
)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.