View source: R/simulations_collection.R
as_tibble.simulations_collection | R Documentation |
Cumulative statistics are shown to gauge how the simulations converge.
## S3 method for class 'simulations_collection'
as_tibble(x, target_dose = NULL, alpha = 0.05, ...)
x |
object of type |
target_dose |
numerical dose index, or NULL (default) for all doses |
alpha |
significance level for symmetrical confidence intervals |
... |
extra args are ignored |
a tibble with cols:
dose
, the dose-level
n
, cumulative inference using the first n simulated iterations
design.x
, The first design in the comparison, aka design X
hit.x
, logical showing if design X recommended dose in iterate n
design.y
, The second design in the comparison, aka design Y
hit.x
, logical showing if design Y recommended dose in iterate n
X
, cumulative sum of hit.x within dose, i.e. count of recommendations
X2
, cumulative sum of hit.x^2 within dose
Y
, cumulative sum of hit.y within dose, i.e. count of recommendations
Y2
, cumulative sum of hit.y^2 within dose
XY
, cumulative sum of hit.x * hit.y within dose
psi1
, X / n
psi2
, Y / n
v_psi1
, variance of psi1
v_psi2
, variance of psi2
cov_psi12
, covariance of psi1 and psi2
delta
, psi1 - psi2
v_delta
, variance of delta
se_delta
, standard error of delta
delta_l
, delta - q * se_delta, where q is alpha / 2 normal quantile
delta_u
, delta + q * se_delta, where q is alpha / 2 normal quantile
comparison
, Label of design.x vs design.y, using design names
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.