Nothing
#' Estimate meta-analytic Pearson's r across multiple studies with two
#' continuous outcome variables.
#'
#'
#' @description
#' `meta_r` is suitable for synthesizing across multiple studies that have
#' measured a linear correlation (Pearson's r) from two continuous variables.
#'
#'
#' @details
#' Once you generate an estimate with this function, you can visualize
#' it with [esci::plot_meta()].
#'
#' The meta-analytic effect size, confidence interval and heterogeneity
#' estimates all come from [metafor::rma()].
#'
#'
#' @param data A dataframe or tibble
#' @param rs A collection of Pearson's r values, 1 per study, all between
#' -1 and 1, inclusive
#' @param ns A collection of study sample sizes, all integers > 2
#' @param labels labels
#' @param labels An optional collection of study labels
#' @param moderator An optional factor to analyze as a categorical moderator,
#' must have k > 2 per groups
#' @param contrast An optional contrast to estimate between moderator levels;
#' express as a vector of contrast weights with 1 weight per moderator level.
#' @param effect_label Optional character giving a human-friendly name of
#' the effect being synthesized
#' @param random_effects TRUE for random effect model; FALSE for fixed effects
#' @param conf_level The confidence level for the confidence interval. Given in
#' decimal form. Defaults to 0.95.
#'
#' @inherit meta_any return
#'
#'
#' @examples
#' # Data: See Introduction to the New Statistics, first edition
#' esci_single_r <- data.frame(
#' studies = c(
#' 'Violin, viola' ,
#' 'Strings' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'All' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Band' ,
#' 'Music majors' ,
#' 'Music majors' ,
#' 'All'
#' ),
#' rvalues = c(
#' .67,
#' .51,
#' .4,
#' .46,
#' .47,
#' .228,
#' -.224,
#' .104,
#' .322,
#' .231,
#' .67,
#' .41,
#' .34,
#' .31,
#' .54,
#' .583
#' ),
#' sample_size = c(
#' 109,
#' 55,
#' 19,
#' 30,
#' 19,
#' 52,
#' 24,
#' 52,
#' 16,
#' 97,
#' 57,
#' 107,
#' 178,
#' 64,
#' 19,
#' 135
#' ),
#' subsets = as.factor(
#' c(
#' 'Strings' ,
#' 'Strings' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Piano' ,
#' 'Strings' ,
#' 'Strings' ,
#' 'Strings' ,
#' 'Strings'
#' )
#' )
#' )
#'
#' # Meta-analysis, random effects, no moderator
#' estimate <- esci::meta_r(
#' esci_single_r,
#' rvalues,
#' sample_size,
#' studies,
#' random_effects = TRUE
#' )
#'
#' # Forest plot
#' myplot_forest <- esci::plot_meta(estimate)
#'
#'
#' # Meta-analysis, random effects, moderator (subsets)
#' estimate_moderator <- esci::meta_r(
#' esci_single_r,
#' rvalues,
#' sample_size,
#' studies,
#' subsets,
#' random_effects = TRUE
#' )
#'
#' # Forest plot
#' myplot_forest_moderator <- esci::plot_meta(estimate_moderator)
#'
#'
#' @export
meta_r <- function(
data,
rs,
ns,
labels = NULL,
moderator = NULL,
contrast = NULL,
effect_label = "My effect",
random_effects = TRUE,
conf_level = .95
) {
# Initialization ---------------------------
# Create quosures and quonames.
# Stolen directly from dabestr
rs_enquo <- rlang::enquo(rs)
rs_quoname <- rlang::quo_name(rs_enquo)
ns_enquo <- rlang::enquo(ns)
ns_quoname <- rlang::quo_name(ns_enquo)
moderator_enquo <- rlang::enquo(moderator)
moderator_quoname <- rlang::quo_name(moderator_enquo)
if (moderator_quoname == "NULL") moderator_quoname <- NULL
labels_enquo <- rlang::enquo(labels)
labels_quoname <- rlang::quo_name(labels_enquo)
if (labels_quoname == "NULL") labels_quoname <- NULL
warnings <- NULL
# Input checks --------------------------------
# * data must be a data frame
# all rows with an NA a parameter column will be dropped, warning issued
# * the column r must exist and be numeric, >= -1 and <= -1
# with > 1 row after NAs removed
# * the column ns must exist and be numeric integers > 0
# with > 1 row after NAs removed
# * the column labels is optional, but if passed must exist and
# have > 1 row after NAs removed
# * the column moderator is optional; checks happen in meta_any
# * contrast should only be passed in moderator is defined; checks in meta_any
# * effect_label should be a character, checked in meta_any
# * conf_level must be a numeric >0 and < 1, checked in meta_any
# Check that data is a data.frame
esci_assert_type(data, "is.data.frame")
# rs
esci_assert_valid_column_name(data, rs_quoname)
esci_assert_column_type(data, rs_quoname, "is.numeric")
row_report <- esci_assert_column_has_valid_rows(
data,
rs_quoname,
lower = 1,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
if (!all(data[[rs_quoname]] >= -1, na.rm = TRUE)) {
stop(
glue::glue("
Some r values in {rs_quoname} are < -1.
These are rows {paste(which(data[[rs_quoname]] < -1), collapse = ', ')}.
")
)
}
if (!all(data[[rs_quoname]] <= 1, na.rm = TRUE)) {
stop(
glue::glue("
Some r values in {rs_quoname} are > 1.
These are rows {paste(which(data[[rs_quoname]] > 1), collapse = ', ')}.
")
)
}
# ns
esci_assert_valid_column_name(data, ns_quoname)
esci_assert_column_type(data, ns_quoname, "is.numeric")
if (!all(data[[ns_quoname]] > 0, na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {ns_quoname} are 0 or less.
These are rows {paste(which(data[[ns_quoname]] <= 0), collapse = ', ')}.
")
)
}
if (!all(is.whole.number(data[[ns_quoname]]), na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {ns_quoname} are not integers.
These are rows {paste(which(!is.whole.number(data[[ns_quoname]])), collapse = ', ')}.
")
)
}
row_report <- esci_assert_column_has_valid_rows(
data,
ns_quoname,
lower = 1,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# labels
if (is.null(labels_quoname)) {
data$esci_label <- paste("Study", seq(1:nrow(data)))
labels_quoname <- "esci_label"
} else {
esci_assert_valid_column_name(data, labels_quoname)
}
row_report <- esci_assert_column_has_valid_rows(
data,
labels_quoname,
lower = 1,
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# moderator
moderator <- !is.null(moderator_quoname)
if (moderator) {
esci_assert_valid_column_name(data, moderator_quoname)
row_report <- esci_assert_column_has_valid_rows(
data,
moderator_quoname,
lower = 1,
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
}
# Check options
# All other checks happen in meta_any:
# * additional constraints on moderator
# * contrast
# * random_effects
# * conf_level
# Data prep------------------------------------------
# vector of passed column names
just_cols <- c(
labels_quoname,
rs_quoname,
ns_quoname,
if (moderator) moderator_quoname
)
# vector of cannonical column names
numeric_cols <- c(
"r",
"N"
)
col_names <- c(
"label",
numeric_cols,
if (moderator) "moderator"
)
# reduce data down to just needed columns with cannonical names
data <- data[ , just_cols]
colnames(data) <- col_names
# Calculations -------------------------------------------------
# Get yi and vi for raw scores
es_data <- as.data.frame(
t(
apply(
X = data[ , numeric_cols],
MARGIN = 1,
FUN = apply_ci_cor,
conf_level = conf_level
)
)
)
eso <- metafor::escalc(ri = data$r, ni = data$N, measure = "ZCOR")
es_data$yi <- eso$yi
es_data$vi <- eso$vi
res <- meta_any(
data = cbind(data, es_data),
yi = "yi",
vi = "vi",
moderator = !!if (moderator) "moderator" else NULL,
labels = "label",
effect_label = effect_label,
effect_size_name = "r",
moderator_variable_name = if (moderator) moderator_quoname else "My moderator",
contrast = contrast,
random_effects = random_effects,
conf_level = conf_level
)
# Clean up -----------------------------
clear_cols <- c(
"label",
"moderator"
)
data[ , clear_cols] <- NULL
res$raw_data <- cbind(res$raw_data, es_data[ , c("LL", "UL")], data)
res$warnings <- c(res$warnings, warnings)
res$es_meta$z <- res$es_meta$effect_size
res$es_meta$effect_size <- esci_z_to_r(res$es_meta$effect_size)
res$es_meta$LL <- esci_z_to_r(res$es_meta$LL)
res$es_meta$UL <- esci_z_to_r(res$es_meta$UL)
res$es_meta$PI_LL <- esci_z_to_r(res$es_meta$PI_LL)
res$es_meta$PI_UL <- esci_z_to_r(res$es_meta$PI_UL)
res$es_meta$FE_effect_size <- esci_z_to_r(res$es_meta$FE_effect_size)
res$es_meta$RE_effect_size <- esci_z_to_r(res$es_meta$RE_effect_size)
res$raw_data$z <- res$raw_data$effect_size
res$raw_data$effect_size <- esci_z_to_r(res$raw_data$effect_size)
res$raw_data$df <- res$raw_data$N - 2
res$raw_data$t <- (res$raw_data$r) / sqrt( (1 - res$raw_data$r^2) / (res$raw_data$df) )
res$raw_data$p <- 2*stats::pt(q=abs(res$raw_data$t), df=22, lower.tail=FALSE)
if (!is.null(res$es_meta_difference)) {
res$es_meta_difference$z <- res$es_meta_difference$effect_size
res$es_meta_difference$effect_size <- esci_z_to_r(res$es_meta_difference$effect_size)
res$es_meta_difference$LL <- esci_z_to_r(res$es_meta_difference$LL)
res$es_meta_difference$UL <- esci_z_to_r(res$es_meta_difference$UL)
cor1 <- res$es_meta_difference$effect_size[1]
cor2 <- res$es_meta_difference$effect_size[2]
ll1 <- res$es_meta_difference$LL[1]
ll2 <- res$es_meta_difference$LL[2]
ul1 <- res$es_meta_difference$UL[1]
ul2 <- res$es_meta_difference$UL[2]
diff <- cor1 - cor2
res$es_meta_difference$effect_size[3] <- diff
res$es_meta_difference$LL[3] <- diff - sqrt((cor1 - ll1)^2 + (ul2 - cor2)^2)
res$es_meta_difference$UL[3] <- diff + sqrt((ul1 - cor1)^2 + (cor2 - ll2)^2)
}
# Effect size labels
res$properties$effect_size_name <- "r"
res$properties$effect_size_name_html <- "<i>r</i>"
res$properties$effect_size_name_ggplot <- "*r*"
return(res)
}
esci_z_to_r <- function(z) {
if (is.null(z)) return(NULL)
return(
(exp(2*z) - 1) / (exp(2*z) + 1)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.