Description Usage Arguments Author(s) References See Also Examples
ehr fits an intensity function to event histories, where point is
produced by point <- pp(y) and lambda is the user-defined
log intensity function.
Nonlinear regression models for lambda can be supplied as
formulae where parameters are unknowns. Factor variables cannot be
used and parameters must be scalars. (See finterp.)
1 2 3 4 |
point |
A point process vector produced by |
lambda |
User-specified function of |
linear |
A formula beginning with ~ specifying the linear part of the regression function. |
plambda |
Vector of initial parameter estimates. If |
delta |
If any time intervals are different from unity, a vector of time intervals. |
envir |
Environment in which model formulae are to be
interpreted or a data object of class, repeated, tccov, or tvcov.
If |
print.level |
|
ndigit |
|
gradtol |
|
steptol |
|
iterlim |
|
fscale |
|
typsize |
|
stepmax |
|
J.K. Lindsey
Lindsey, J.K. (1995) Fitting parametric counting processes by using log linear models. Journal of the Royal Statistical Society C44, 201-212.
bp, finterp,
ident, pp,
tccov, tpast,
ttime, tvcov.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | y <- c(5,3,2,4)
# event indicator
py <- pp(y)
# time since previous event
ptime <- tpast(y)
# individual ID
i <- c(1,1,2,2)
id <- ident(y, i)
# times and corresponding covariate values
tx <- c(2,3,1,2,2,2,2)
x <- c(1,2,2,1,2,2,1)
zcov <- tvcov(y, x, tx)
# Poisson process
ehr(py, plambda=1)
# Weibull process
lambda1 <- function(p) p[1]+p[2]*log(ptime)
ehr(py, lambda=lambda1, plambda=c(1,1))
# or
ehr(py, lambda=~log(ptime), plambda=c(1,1))
# or
ehr(py, lambda=~b0+b1*log(ptime), plambda=list(b0=1,b1=1))
# Poisson process with time-varying covariate
lambda2 <- function(p) p[1]+p[2]*zcov
ehr(py, lambda=lambda2, plambda=c(1,1))
# or
ehr(py, lambda=~zcov, plambda=c(1,1))
# or
ehr(py, lambda=~c0+c1*zcov, plambda=list(c0=1,c1=1))
# Weibull process with time-varying covariate
lambda3 <- function(p) p[1]+p[2]*log(ptime)+p[3]*zcov
ehr(py, lambda=lambda3, plambda=c(1,1,1))
# or
ehr(py, lambda=~log(ptime)+zcov, plambda=c(1,1,1))
# or
ehr(py, lambda=~c0+b1*log(ptime)+c1*zcov, plambda=list(c0=1,c1=1,b1=1))
# gamma process with time-varying covariate
lambda4 <- function(p) hgamma(ptime, p[1], exp(p[2]+p[3]*zcov))
ehr(py, lambda=lambda4, plambda=c(1,1,1))
# or
ehr(py, lambda=~hgamma(ptime, b1, exp(c0+c1*zcov)),
plambda=list(c0=1,c1=1,b1=1))
# or
lambda5 <- function(p, linear) hgamma(ptime, p[1], exp(linear))
ehr(py, lambda=lambda5, linear=~zcov, plambda=c(1,1,1))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.