Description Usage Arguments Author(s) References See Also Examples
coxre
fits a Cox proportional hazards model to event history
data using a gamma distribution random effect. The parameter, gamma,
is the variance of this mixing distribution.
If a matrix of response times is supplied, the model can be stratified by columns, i.e. a different intensity function is fitted for each column. To fit identical intensity functions to all response types, give the times as a vector.
1 2 3 4 |
response |
Vector or matrix of times to events, with one column per type of response (or subunit). |
censor |
Corresponding vector or matrix of censoring indicators. If NULL all values are set to one. |
nest |
Vector indicating to which unit each observation belongs. |
cov |
One covariate |
stratified |
If TRUE, a model stratified on type of response (the columns of response) is fitted instead of proportional intensities. |
cumul |
Set to TRUE if response times are from a common origin instead of times to (or between) events. |
estimate |
Initial estimate of the frailty parameter. |
iter |
Maximum number of iterations allowed for the inner EM loop. |
print.level |
|
ndigit |
|
gradtol |
|
steptol |
|
iterlim |
|
fscale |
|
typsize |
|
stepmax |
|
D.G. Clayton and J.K. Lindsey
Clayton, D. (1987) The analysis of event history data: a review of progress and outstanding problems. Statistics in Medicine 7: 819-841
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 11 individuals, each with 5 responses
y <- matrix(c(51,36,50,35,42,
27,20,26,17,27,
37,22,41,37,30,
42,36,32,34,27,
27,18,33,14,29,
43,32,43,35,40,
41,22,36,25,38,
38,21,31,20,16,
36,23,27,25,28,
26,31,31,32,36,
29,20,25,26,25),ncol=5,byrow=TRUE)
# Different intensity functions
coxre(response=y, censor=matrix(rep(1,55),ncol=5), nest=1:11,
est=0.7, stratified=TRUE)
# Proportional intensity functions for the five responses
coxre(response=y, censor=matrix(rep(1,55),ncol=5), nest=1:11,
est=0.7, stratified=FALSE)
# Identical intensity functions
coxre(response=as.vector(t(y)), censor=rep(1,55),
nest=rep(1:11,rep(5,11)), est=0.7)
|
Loading required package: rmutil
Attaching package: ‘rmutil’
The following object is masked from ‘package:stats’:
nobs
The following objects are masked from ‘package:base’:
as.data.frame, units
Stratified Cox proportional hazards model with gamma frailty
Call:
coxre(response = y, censor = matrix(rep(1, 55), ncol = 5), nest = 1:11,
est = 0.7, stratified = TRUE)
-Log likelihood 126.3376
Degrees of freedom 6
AIC 175.3376
Iterations 2
gamma = 0.7123921
correlation = 0.3831395
Regression coefficients:
(Intercept)
-2.637733
Fixed effects:
1 2 3 4 5 6
0.04508930 2.54649734 0.99559248 0.39620871 3.78376536 4.36021345
7 8 9 10 11 12
2.85155056 15.19457491 32.42712131 11.88733143 0.06512899 1.36010945
13 14 15 16 17 18
2.33548856 6.33463000 4.35346859 0.93683082 15.19457491 10.99143247
19 20 21 22 23 24
0.04689287 1.40576796 1.83167247 1.11191216 3.70907366 4.26194753
25 26 27 28 29 30
2.85238383 3.04049262 16.21356066 13.58552164 0.08373727 0.45336982
31 32 33 34 35 36
0.58497068 0.87455011 3.22557551 0.98988924 4.96261197 30.40492624
37 38 39 40 41 42
14.31006962 0.07327011 0.15003721 1.66971710 2.50926261 3.30851804
43 44 45 46 47
5.42073206 1.11455511 6.10344954 16.21356066 47.54932573
Random effects:
1 2 3 4 5 6 7 8
0.1437091 2.3526328 0.4868738 0.4860624 1.6660830 0.2808677 0.7155620 1.5899889
9 10 11
1.3594625 0.9497731 2.0098322
Cox proportional hazards model with gamma frailty
Call:
coxre(response = y, censor = matrix(rep(1, 55), ncol = 5), nest = 1:11,
est = 0.7, stratified = FALSE)
-Log likelihood 163.4521
Degrees of freedom 21
AIC 197.4521
Iterations 2
gamma = 0.8907635
correlation = 0.4584099
Regression coefficients:
(Intercept) resp2 resp3 resp4 resp5
-3.6281678 2.3562336 0.5615743 1.9280003 1.0898560
Fixed effects:
1 2 3 4 5 6
9.386873e-03 6.911260e-02 1.409360e-01 1.504643e-01 2.469569e-01 2.228434e-01
7 8 9 10 11 12
4.998805e-01 2.715448e-01 6.134907e-01 1.156066e+00 2.403159e+00 6.024137e-01
13 14 15 16 17 18
1.299450e+00 7.583284e-01 2.341333e+00 3.007212e+00 1.247655e+00 1.419677e+00
19 20 21 22 23 24
3.146013e+00 8.783661e+00 6.528740e+00 9.615225e+00 4.678915e+00 2.270592e+01
25 26 27 28
4.201789e+01 7.372914e+01 1.491668e+01 2.860966e+02
Random effects:
1 2 3 4 5 6 7 8
0.1251022 2.5491149 0.4698635 0.3752438 2.1178225 0.2330259 0.6809870 1.7961565
9 10 11
1.5594363 0.6223883 2.1557178
Stratified Cox proportional hazards model with gamma frailty
Call:
coxre(response = as.vector(t(y)), censor = rep(1, 55), nest = rep(1:11,
rep(5, 11)), est = 0.7)
-Log likelihood 176.0124
Degrees of freedom 25
AIC 206.0124
Iterations 3
gamma = 0.4231517
correlation = 0.2419091
Regression coefficients:
(Intercept)
-2.739641
Fixed effects:
1 2 3 4 5 6
0.01978612 0.14234482 0.29121447 0.30137738 0.46574270 0.34311332
7 8 9 10 11 12
0.70527154 0.36418546 0.75025621 1.29501069 2.46833092 0.63532232
13 14 15 16 17 18
1.33877190 0.77833468 2.41821379 2.89860461 1.10678801 1.24057362
19 20 21 22 23 24
2.61934616 6.93323077 4.23314623 5.20774598 1.92591174 8.54216858
25 26 27 28
13.86970985 23.59335600 4.22651740 59.17124357
Random effects:
1 2 3 4 5 6 7 8
0.2590148 1.8040818 0.6844730 0.6580569 1.5160417 0.3926501 0.7078798 1.2218770
9 10 11
1.2448293 0.9851468 1.7396023
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.