Description Usage Arguments Details Value Warning Acknowledgments Note Author(s) References See Also Examples
Maximum likelihood estimation for fitting the extreme value mixture model with kernel density estimate for bulk distribution upto the threshold and conditional GPD above threshold with continuity at threshold. With options for profile likelihood estimation for threshold and fixed threshold approach.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | fkdengpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, kernel = "gaussian", add.jitter = FALSE,
factor = 0.1, amount = NULL, std.err = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)
lkdengpdcon(x, lambda = NULL, u = 0, xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", log = TRUE)
nlkdengpdcon(pvector, x, phiu = TRUE, kernel = "gaussian",
finitelik = FALSE)
proflukdengpdcon(u, pvector, x, phiu = TRUE, kernel = "gaussian",
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE,
...)
nlukdengpdcon(pvector, u, x, phiu = TRUE, kernel = "gaussian",
finitelik = FALSE)
|
x |
vector of sample data |
phiu |
probability of being above threshold (0, 1) or logical, see Details in
help for |
useq |
vector of thresholds (or scalar) to be considered in profile likelihood or
|
fixedu |
logical, should threshold be fixed (at either scalar value in |
pvector |
vector of initial values of parameters or |
kernel |
kernel name ( |
add.jitter |
logical, whether jitter is needed for rounded kernel centres |
factor |
see |
amount |
see |
std.err |
logical, should standard errors be calculated |
method |
optimisation method (see |
control |
optimisation control list (see |
finitelik |
logical, should log-likelihood return finite value for invalid parameters |
... |
optional inputs passed to |
lambda |
scalar bandwidth for kernel (as half-width of kernel) |
u |
scalar threshold value |
xi |
scalar shape parameter |
bw |
scalar bandwidth for kernel (as standard deviations of kernel) |
log |
logical, if |
The extreme value mixture model with kernel density estimate for bulk and GPD tail with continuity at threshold is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters, variance-covariance matrix and their standard errors are automatically output.
See help for fnormgpd
for details, type help fnormgpd
.
Only the different features are outlined below for brevity.
The GPD sigmau
parameter is now specified as function of other parameters, see
help for dkdengpdcon
for details, type help kdengpdcon
.
Therefore, sigmau
should not be included in the parameter vector if initial values
are provided, making the full parameter vector
(lambda
, u
, xi
) if threshold is also estimated and
(lambda
, xi
) for profile likelihood or fixed threshold approach.
Cross-validation likelihood is used for KDE, but standard likelihood is used
for GPD component. See help for fkden
for details,
type help fkden
.
The alternate bandwidth definitions are discussed in the
kernels
, with the lambda
as the default
used in the likelihood fitting. The bw
specification is the same as
used in the density
function.
The possible kernels are also defined in kernels
with the "gaussian"
as the default choice.
Log-likelihood is given by lkdengpdcon
and it's
wrappers for negative log-likelihood from nlkdengpdcon
and nlukdengpdcon
. Profile likelihood for single
threshold given by proflukdengpdcon
. Fitting function
fkdengpdcon
returns a simple list with the
following elements
call : | optim call |
x : | data vector x |
init : | pvector |
fixedu : | fixed threshold, logical |
useq : | threshold vector for profile likelihood or scalar for fixed threshold |
nllhuseq : | profile negative log-likelihood at each threshold in useq |
optim : | complete optim output |
mle : | vector of MLE of parameters |
cov : | variance-covariance matrix of MLE of parameters |
se : | vector of standard errors of MLE of parameters |
rate : | phiu to be consistent with evd |
nllh : | minimum negative log-likelihood |
n : | total sample size |
lambda : | MLE of lambda (kernel half-width) |
u : | threshold (fixed or MLE) |
sigmau : | MLE of GPD scale (estimated from other parameters) |
xi : | MLE of GPD shape |
phiu : | MLE of tail fraction (bulk model or parameterised approach) |
se.phiu : | standard error of MLE of tail fraction |
bw : | MLE of bw (kernel standard deviations) |
kernel : | kernel name |
See important warnings about cross-validation likelihood estimation in
fkden
, type help fkden
.
See Acknowledgments in
fnormgpd
, type help fnormgpd
. Based on code
by Anna MacDonald produced for MATLAB.
The data and kernel centres are both vectors. Infinite and missing sample values (and kernel centres) are dropped.
When pvector=NULL
then the initial values are:
normal reference rule for bandwidth, using the bw.nrd0
function, which is
consistent with the density
function. At least two kernel
centres must be provided as the variance needs to be estimated.
threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold approaches);
MLE of GPD shape parameter above threshold.
Yang Hu and Carl Scarrott carl.scarrott@canterbury.ac.nz
http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons) thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2), 353-360.
Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers C25(11), 1175-1179.
MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.
Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.
kernels
, kfun
,
density
, bw.nrd0
and dkde
in ks
package.
fgpd
and gpd
.
Other kden: bckden
, fbckden
,
fgkgcon
, fgkg
,
fkdengpd
, fkden
,
kdengpdcon
, kdengpd
,
kden
Other kdengpd: bckdengpd
,
fbckdengpd
, fgkg
,
fkdengpd
, fkden
,
gkg
, kdengpdcon
,
kdengpd
, kden
Other kdengpdcon: bckdengpdcon
,
fbckdengpdcon
, fgkgcon
,
fkdengpd
, gkgcon
,
kdengpdcon
, kdengpd
Other gkgcon: fgkgcon
, fgkg
,
gkgcon
, gkg
,
kdengpdcon
Other bckdengpdcon: bckdengpdcon
,
bckdengpd
, bckden
,
fbckdengpdcon
, fbckdengpd
,
fbckden
, gkgcon
,
kdengpdcon
Other fkdengpdcon: kdengpdcon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ## Not run:
set.seed(1)
par(mfrow = c(2, 1))
x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)
# Continuity constraint
fit = fkdengpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="red"))
abline(v = fit$u, col = "red")
# No continuity constraint
fit2 = fkdengpdcon(x)
with(fit2, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topleft", c("True Density","No continuity constraint","With continuty constraint"),
col=c("black", "blue", "red"), lty = 1)
# Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fkdengpdcon(x, useq = seq(0, 2, length = 20))
fitfix = fkdengpdcon(x, useq = seq(0, 2, length = 20), fixedu = TRUE)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.