Nothing
pmonitor <- function(object, kind=1, ...){
x <- object$pop@score#[,"Best.qa"]
if(kind==1){i=1;j=2}else if(kind==2){i=4;j=6}else{i=5; j=5}
x2 <- x[which(x[,i] < Inf & x[,i] > -Inf),i]
x3 <- x[which(x[,j] < Inf & x[,j] > -Inf),j]
mmin <- min(c(0, x2))
mmax <- max(c( x3, x2 ) )
plot(x[,i], type="o", ylim=c(mmin,mmax), xlab="Generation", ylab="Value", col=i)
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
if(ncol(x) > 1){
# for(i in 2){
par(new=TRUE)
plot(x[,j], col=j, ylim=c(mmin,mmax), ylab="",xlab="", type="o",...)
# }
}
legend("topleft",legend = colnames(x)[c(i,j)], col=c(i,j), bty="n", lty=1)
}
pareto <- function(object, scaled=TRUE, pch=20, xlim, ...){
transp<- function (col, alpha = 0.5) {
res <- apply(col2rgb(col), 2, function(c) rgb(c[1]/255, c[2]/255,
c[3]/255, alpha))
return(res)
}
dt <- object$pop@indivPerformance
if(length(which(!is.na(dt$deltaC))) == 0){
stop("To see build this plot you need to run evolafit with argument traceDelta=TRUE", call. = FALSE)
}
# prepare rate ot coancestry
dt$deltaC <- dt$deltaC * -1
# prepare performance
if(scaled){
minFitness <- min(dt$fitness)
maxFitness <- max(dt$fitness)
dt$fitness = (dt$fitness-minFitness)/(maxFitness-minFitness) * 100 # standardized qa
}else{dt$fitness <- dt$fitness }
colfunc <- colorRampPalette(c("plum1", "plum4"))
oldpar <- par(no.readonly = TRUE) # code line i
on.exit(par(oldpar)) # code line i + 1
layout(matrix(1:2,ncol=2), widths = c(2,1),heights = c(1,1))
# left plot
if(!scaled){ylabName="Maximum gain (units)"}else{ylabName="Maximum gain (%)"}
dt$color <- transp(colfunc(max(dt$generation))[dt$generation], alpha = 0.4)
if(missing(xlim)){
# xlim <- quantile(na.omit(dt$deltaC),c(.005,.995))
xlim=c(min(na.omit(dt$deltaC)),0)
}
with(dt, plot(fitness~ deltaC, col=color, main="Pareto frontier", pch=pch,
xlab="Rate of coancestry", ylab=ylabName, xlim=xlim, xaxt="n", ... ))
axis(1, at=seq(xlim[1],xlim[2],diff(xlim)/5),labels=round(seq(xlim[1]*-1,xlim[2]*-1, (diff(xlim)/5)*-1 ),3), col.axis="black")
grid()
averages <- aggregate(cbind(deltaC,fitness)~generation, FUN=mean, data=dt)
lines(averages$deltaC, averages$fitness, col = "blue")
points(x=averages$deltaC[nrow(averages)], y=averages$fitness[nrow(averages)], col="red", pch=20)
# right plot
legend_image <- as.raster(matrix(colfunc(max(dt$generation)), ncol=1))
plot(c(0,2),c(0, max(dt$generation) ),type = 'n', axes = F,xlab = '', ylab = '', main = 'Generation')
text(x=1.5, y = seq(min(dt$generation),max(dt$generation),l=5), labels = seq(max(dt$generation),min(dt$generation),l=5) )
rasterImage(legend_image, 0, 0, 1, max(dt$generation) )
# par(mfrow=c(1,1))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.