Nothing
#' Graph modeled means and standard deviations of groups in two-way factorial design
#'
#' Internal function that plots modeled cell means and standard deviations and covariance matrices.
#' Takes input generated by the `calculate_mean_matrix` function and runs inside of it.
#'
#' @param group_size integer - number of subjects in each group
#' @param matrices_obj List length 2 - Cell means and standard deviation matrices
#'
#' @importFrom rlang .data
#' @return Line plot with expected mean and standard deviation for each combination of factor levels
#'
#' @export
graph_twoway_assumptions <- function(group_size=100, matrices_obj)
{
if(length(matrices_obj)==2)
{
test_run <- twoway_simulation_independent(group_size=group_size, matrices_obj=matrices_obj, nsims=1)
label_list <- dimnames(matrices_obj[[1]])
}else if (length(matrices_obj)==5)
{
test_run <- twoway_simulation_correlated(group_size=group_size, matrices_obj=matrices_obj, nsims=1)$simulated_data
label_list <- dimnames(matrices_obj[[2]])
}
fA <- names(test_run)[4]
fB <- names(test_run)[5]
test_run[,4] <- gsub(paste0("^", fA, "_"), "", test_run[,4])
test_run[,5] <- gsub(paste0("^", fB, "_"), "", test_run[,5])
summarized_test <- summarySE(test_run, measurevar = "y", groupvars=c(fA, fB))
if(any(is.na(summarized_test$y)))
{
warning("There are missing values in the expected outcomes")
}
summarized_test[,1] <- factor(summarized_test[,1], levels = label_list[[1]])
summarized_test[,2] <- factor(summarized_test[,2], levels = label_list[[2]])
plotmeans_sd <- function(df, column1, column2)
{
gg <- ggplot2::ggplot(data=summarized_test, ggplot2::aes(x = .data[[column2]], y = y, group = .data[[column1]], colour=.data[[column1]])) +
ggplot2::geom_errorbar(ggplot2::aes(ymin=y-sd, ymax=y+sd), width=.1, position = ggplot2::position_dodge(width = 0.15)) +
ggplot2::geom_line(position = ggplot2::position_dodge(width = 0.15), linewidth=1.1) +
ggplot2::geom_point(position = ggplot2::position_dodge(width = 0.15), size=1.1) + ggthemes::theme_few()
gg
}
p <- plotmeans_sd(summarized_test, fA, fB)
p <- p + ggplot2::labs(y = "Outcome\n\u00B1 standard deviation", title=expression(paste("Mean cell ratio modeled ", mu[italic(ij)]," and ", sigma[italic(ij)]^2))) +
ggplot2::theme(axis.text = ggplot2::element_text(size = 15), axis.title = ggplot2::element_text(size=15), legend.text = ggplot2::element_text(size = 15),
plot.title = ggplot2::element_text(size = 20), legend.title = ggplot2::element_text(size = 15))
p
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.