Description Usage Arguments Details Value Author(s) References See Also Examples
Test the equality of nonparametric curves or surfaces based on variance estimators. The specific model considered here is
y_ij= m_i(x_ij) + e_ij,
where m_i(.), are nonparametric smooth functions; e_ij are independent identically distributed errors. The errors e_ij do not have to be independent N(0, sigma^2) errors. The errors can be heteroscedastic, i.e., e_ij = sigma_i(x_ij) * u_ij, where u_ij are independent identically distributed errors with mean 0 and variance 1.
We are interested in the problem of testing the equality of the regression curves (when x is one-dimensional) or surfaces (when x is two-dimensional),
H_0: m_1(.) = m_2(.) = ... v.s. H_1: otherwise
The problem can also be viewed as the test of the equality in the one-sample problem for functional data.
1 2 3 4 |
x |
a vector or two-column matrix of covariate values. |
y |
a vector of response values. |
group |
a vector of group indicators that has the same length as y. |
B |
the number of bootstrap replicates. Usually this will be a single positive integer. |
degree |
the degree of the local polynomials to be used. It can ben 0, 1 or 2. |
criterion |
the criterion for automatic smoothing parameter selection: “aicc” denotes bias-corrected AIC criterion, “gcv” denotes generalized cross-validation. |
family |
if “gaussian” fitting is by least-squares, and if “symmetric” a re-descending M estimator is used with Tukey's biweight function. |
user.span |
the user-defined parameter which controls the degree of smoothing. |
... |
some control parameters can also be supplied directly |
A wild bootstrap algorithm is applied to test the equality of nonparametric curves or surfaces based on variance estimators.
An object of class “fANCOVA”.
X.F. Wang wangx6@ccf.org
Dette, H., Neumeyer, N. (2001). Nonparametric analysis of covariance. Annals of Statistics. 29, 1361–1400.
Wang. X.F. and Ye, D. (2010). On nonparametric comparison of images and regression surfaces. Journal of Statistical Planning and Inference. 140, 2875–2884.
T.L2
, T.aov
, loess.as
, loess.ancova
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ## Nonparametric test the equality of multiple regression curves
## Simulate data sets
n1 <- 100
x1 <- runif(n1,min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1,sd=sd1)
y1 <- sin(2*x1) + e1
n2 <- 100
x2 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- sin(2*x2) + 1 + e2
n3 <- 120
x3 <- runif(n3, min=0, max=3)
sd3 <- 0.25
e3 <- rnorm(n3, sd=sd3)
y3 <- sin(2*x3) + e3
data.bind <- rbind(cbind(x1,y1,1), cbind(x2,y2,2),cbind(x3,y3,3))
data.bind <- data.frame(data.bind)
colnames(data.bind)=c('x','y','group')
t1 <- T.var(data.bind$x, data.bind$y, data.bind$group, degree=2, criterion="gcv")
t1
plot(t1)
plot(t1, test.statistic=FALSE)
########
## Nonparametric test the equality for regression surfaces
## Simulate data sets
n1 <- 100
x11 <- runif(n1,min=0, max=3)
x12 <- runif(n1,min=0, max=3)
sd1 <- 0.2
e1 <- rnorm(n1,sd=sd1)
y1 <- sin(2*x11) + sin(2*x12) + e1
n2 <- 100
x21 <- runif(n2, min=0, max=3)
x22 <- runif(n2, min=0, max=3)
sd2 <- 0.25
e2 <- rnorm(n2, sd=sd2)
y2 <- sin(2*x21) + sin(2*x22) + 1 + e2
n3 <- 120
x31 <- runif(n3, min=0, max=3)
x32 <- runif(n3, min=0, max=3)
sd3 <- 0.25
e3 <- rnorm(n3, sd=sd3)
y3 <- sin(2*x31) + sin(2*x32) + e3
data.bind <- rbind(cbind(x11, x12 ,y1,1), cbind(x21, x22, y2,2),cbind(x31, x32,y3,3))
data.bind <- data.frame(data.bind)
colnames(data.bind)=c('x1','x2', 'y','group')
T.var(data.bind[,c(1,2)], data.bind$y, data.bind$group)
|
fANCOVA 0.6-1 loaded
Test the equality of curves based on variance estimators
Comparing 3 nonparametric regression curves
Local polynomial regression with automatic smoothing parameter selection via GCV is used for curve fitting.
Wide-bootstrap algorithm is applied to obtain the null distribution.
Null hypothesis: there is no difference between the 3 curves.
T = 0.1963 p-value = 0.004975
Test the equality of surfaces based on variance estimators
Comparing 3 nonparametric regression surfaces
Local polynomial regression with automatic smoothing parameter selection via AICC is used for surface fitting.
Wide-bootstrap algorithm is applied to obtain the null distribution.
Null hypothesis: there is no difference between the 3 surfaces.
T = 0.2139 p-value = 0.004975
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.