Description Usage Arguments Value Author(s) Examples
Extract all the results (coordinates, squared cosine and contributions)
for the active individuals/quantitative variables/qualitative variable categories/groups/partial axes from Multiple Factor Analysis (MFA) outputs.
get_mfa(): Extract the results for variables and individuals
get_mfa_ind(): Extract the results for individuals only
get_mfa_var(): Extract the results for variables (quantitatives, qualitatives and groups)
get_mfa_partial_axes(): Extract the results for partial axes only
1 2 3 4 5 6 7 8 9 10 | get_mfa(
res.mfa,
element = c("ind", "quanti.var", "quali.var", "group", "partial.axes")
)
get_mfa_ind(res.mfa)
get_mfa_var(res.mfa, element = c("quanti.var", "quali.var", "group"))
get_mfa_partial_axes(res.mfa)
|
res.mfa |
an object of class MFA [FactoMineR]. |
element |
the element to subset from the output. Possible values are "ind", "quanti.var", "quali.var", "group" or "partial.axes". |
a list of matrices containing the results for the active individuals/quantitative variable categories/qualitative variable categories/groups/partial axes including :
coord |
coordinates for the individuals/quantitative variable categories/qualitative variable categories/groups/partial axes |
cos2 |
cos2 for the individuals/quantitative variable categories/qualitative variable categories/groups/partial axes |
contrib |
contributions of the individuals/quantitative variable categories/qualitative variable categories/groups/partial axes |
inertia |
inertia of the individuals/quantitative variable categories/qualitative variable categories/groups/partial axes |
Alboukadel Kassambara alboukadel.kassambara@gmail.com
Fabian Mundt f.mundt@inventionate.de
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # Multiple Factor Analysis
# ++++++++++++++++++++++++
# Install and load FactoMineR to compute MFA
# install.packages("FactoMineR")
library("FactoMineR")
data(poison)
res.mfa <- MFA(poison, group=c(2,2,5,6), type=c("s","n","n","n"),
name.group=c("desc","desc2","symptom","eat"), num.group.sup=1:2,
graph = FALSE)
# Extract the results for qualitative variable categories
var <- get_mfa_var(res.mfa, "quali.var")
print(var)
head(var$coord) # coordinates of qualitative variables
head(var$cos2) # cos2 of qualitative variables
head(var$contrib) # contributions of qualitative variables
# Extract the results for individuals
ind <- get_mfa_ind(res.mfa)
print(ind)
head(ind$coord) # coordinates of individuals
head(ind$cos2) # cos2 of individuals
head(ind$contrib) # contributions of individuals
# You can also use the function get_mfa()
get_mfa(res.mfa, "ind") # Results for individuals
get_mfa(res.mfa, "quali.var") # Results for qualitative variable categories
|
Loading required package: ggplot2
Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
Multiple Factor Analysis results for qualitative variable categories
===================================================
Name Description
1 "$coord" "Coordinates"
2 "$cos2" "Cos2, quality of representation"
3 "$contrib" "Contributions"
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Nausea_n 0.2995559 -0.008263233 -0.15087999 -0.05120534 0.02684045
Nausea_y -1.0734086 0.029609918 0.54065330 0.18348582 -0.09617827
Vomit_n 0.4923055 -0.335833158 0.06315216 0.20249017 0.03344304
Vomit_y -0.7384582 0.503749737 -0.09472824 -0.30373526 -0.05016455
Abdo_n 1.4594717 -0.253368918 -0.02659215 -0.10539596 -0.03153966
Abdo_y -0.7100132 0.123260555 0.01293672 0.05127371 0.01534362
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Nausea_n 0.5675315 0.0004318514 0.143978489 0.016583068 0.0045563154
Nausea_y 0.5675315 0.0004318514 0.143978489 0.016583068 0.0045563154
Vomit_n 0.5335539 0.2482881886 0.008779814 0.090264467 0.0024621829
Vomit_y 0.5335539 0.2482881886 0.008779814 0.090264467 0.0024621829
Abdo_n 0.9163124 0.0276158818 0.000304200 0.004778594 0.0004279236
Abdo_y 0.9163124 0.0276158818 0.000304200 0.004778594 0.0004279236
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Nausea_n 1.041575 0.002357361 1.112155571 0.1542638 0.05473887
Nausea_y 3.732310 0.008447211 3.985224130 0.5527787 0.19614761
Vomit_n 2.158985 2.988262782 0.149528552 1.8513432 0.06521886
Vomit_y 3.238478 4.482394173 0.224292828 2.7770149 0.09782829
Abdo_n 10.349759 0.927762633 0.014461496 0.2735807 0.03163984
Abdo_y 5.035018 0.451343984 0.007035322 0.1330933 0.01539236
Multiple Factor Analysis results for individuals
===================================================
Name Description
1 "$coord" "Coordinates"
2 "$cos2" "Cos2, quality of representation"
3 "$contrib" "Contributions"
4 "$coord.partiel" "Partial coordinates"
5 "$within.inertia" "Within inertia"
6 "$within.partial.inertia" "Within partial inertia"
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
1 -0.8980293 -0.19968268 0.10527090 -0.06375957 -0.2468778
2 1.6550439 -0.41095346 -0.16606815 -0.49335618 1.4414215
3 -0.8673037 0.09906989 -0.27126101 -0.42418672 -0.2250902
4 1.7839172 -0.56856945 -0.04179541 -0.09829156 -0.6203236
5 -0.8673037 0.09906989 -0.27126101 -0.42418672 -0.2250902
6 -1.1229099 -1.07440938 -4.26919514 3.89647532 0.9498171
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
1 0.35650962 0.017626699 0.0048989935 0.001797136 0.02694352
2 0.39631064 0.024434418 0.0039901519 0.035215824 0.30060672
3 0.50651695 0.006608988 0.0495480243 0.121161803 0.03411653
4 0.60082570 0.061033205 0.0003298044 0.001824029 0.07265003
5 0.50651695 0.006608988 0.0495480243 0.121161803 0.03411653
6 0.03403476 0.031158209 0.4919544784 0.409804540 0.02435078
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
1 1.0075082 0.08591005 0.028403241 0.01143425 0.1948150
2 3.4220518 0.36387188 0.070684466 0.68460183 6.6411041
3 0.9397448 0.02114689 0.188593192 0.50609384 0.1619465
4 3.9757303 0.69651464 0.004477221 0.02717374 1.2299713
5 0.9397448 0.02114689 0.188593192 0.50609384 0.1619465
6 1.5752786 2.48715469 46.713592970 42.70323449 2.8836218
Multiple Factor Analysis results for individuals
===================================================
Name Description
1 "$coord" "Coordinates"
2 "$cos2" "Cos2, quality of representation"
3 "$contrib" "Contributions"
4 "$coord.partiel" "Partial coordinates"
5 "$within.inertia" "Within inertia"
6 "$within.partial.inertia" "Within partial inertia"
Multiple Factor Analysis results for qualitative variable categories
===================================================
Name Description
1 "$coord" "Coordinates"
2 "$cos2" "Cos2, quality of representation"
3 "$contrib" "Contributions"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.