Nothing
.get_run_list <- function(
iteration_list,
data_id,
run_id = NULL) {
# Check if data_id has any length.
if (length(data_id) == 0) return(list())
# Return an empty list if data_id equals 0.
if (data_id == 0) return(list())
# Return part of the run list.
if (is.null(run_id)) {
return(iteration_list[[as.character(data_id)]]$run)
} else {
return(iteration_list[[as.character(data_id)]]$run[[as.character(run_id)]])
}
}
.get_sample_identifiers <- function(
run = NULL,
iteration_list = NULL,
data_id = NULL,
run_id = NULL,
train_or_validate) {
# Get run from iter_list if not provided directly.
if (is.null(run)) {
run <- .get_run_list(
iteration_list = iteration_list,
data_id = data_id,
run_id = run_id)
}
# Extract training or validation data - note that run$valid_samples can be
# NULL.
if (train_or_validate == "train") {
samples <- run$train_samples
} else {
samples <- run$valid_samples
}
if (!data.table::is.data.table(samples)) {
samples <- data.table::data.table("sample_id" = samples)
}
return(samples)
}
.get_iteration_identifiers <- function(run, perturb_level = NULL) {
# Extract the runs
run_table <- run$run_table
# Set the perturbation level that will be returned.
if (is.null(perturb_level)) {
indicated_perturb_level <- tail(run_table, n = 1L)$perturb_level
} else {
indicated_perturb_level <- perturb_level
}
# Get the corresponding row
run_table <- run_table[perturb_level == indicated_perturb_level, ]
# Extract data and run identifiers.
return(list(
"data" = run_table$data_id[1],
"run" = run_table$run_id[1],
"perturb_level" = run_table$perturb_level[1],
"perturbation" = run_table$perturbation[1]))
}
.get_preprocessing_iteration_identifiers <- function(run) {
# Find the identifiers for the data and run identifiers that allow for
# pre-processing.
# Suppress NOTES due to non-standard evaluation in data.table
can_pre_process <- NULL
# Extract the run table
run_table <- run$run_table
# Find the last entry that is available for pre-processing
run_table <- tail(run_table[can_pre_process == TRUE, ], n = 1L)
# Extract data and run identifiers.
return(list(
"data" = run_table$data_id[1],
"run" = run_table$run_id[1],
"perturb_level" = run_table$perturb_level[1],
"perturbation" = run_table$perturbation[1]))
}
.get_process_step_data_identifier <- function(project_info, process_step) {
# Get the main data id for a step in the overall modelling process.
# Suppress NOTES due to non-standard evaluation in data.table
feat_sel <- model_building <- external_validation <- NULL
# Load experiment data table
experiment_table <- project_info$experiment_setup
if (process_step == "fs") {
# Find row on where feature selection takes place and extract the main data
# id.
main_data_id <- experiment_table[feat_sel == TRUE, ]$main_data_id[1]
} else if (process_step %in% c("mb")) {
# Find row where model building takes place and extract the main data id.
main_data_id <- experiment_table[model_building == TRUE, ]$main_data_id[1]
} else if (process_step == "ev") {
# Check if external validation is present; otherwise return an illegal main
# data id.
if (any(experiment_table$external_validation)) {
main_data_id <- experiment_table[external_validation == TRUE, ]$main_data_id[1]
} else {
main_data_id <- -1L
}
} else {
..error_reached_unreachable_code(paste0(
".get_process_step_data_identifier: encountered unknown process step code: ",
process_step))
}
return(main_data_id)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.