R/FamiliarDataElement.R

Defines functions ..message_dispatcher_details ..compute_bias_corrected_estimate ..compute_bootstrap_confidence_estimate .extract_dispatcher_model .extract_dispatcher_hybrid .extract_dispatcher_ensemble

#' @include FamiliarS4Generics.R
#' @include FamiliarS4Classes.R
NULL


# add_data_element_identifier methods ------------------------------------------

## add_data_element_identifier (list) ------------------------------------------
setMethod(
  "add_data_element_identifier",
  signature(x = "list"),
  function(x, ...) {
    # Add identifier to every data element.
    data_elements <- unlist(lapply(x, add_data_element_identifier, ...))
    
    return(data_elements)
  }
)



## add_data_element_identifier (familiarDataElement) ---------------------------
setMethod(
  "add_data_element_identifier",
  signature(x = "familiarDataElement"),
  function(x, ...) {
    
    # Get dots, which contains the identifier to be set.
    dots <- list(...)
    
    if (length(dots) > 1) {
      ..error_reached_unreachable_code(
        "add_data_element_identifier: can only add one identifier at a time.")
    }
    
    # Find the name of the identifier.
    identifier_name <- names(dots)
    
    # Iterate over values and create a separate data element for each value.
    data_elements <- lapply(
      dots[[identifier_name]],
      function(value, x, identifier_name) {
        
        # Find the list of previous identifiers, or create a new one.
        identifier_list <- x@identifiers
        if (is.null(identifier_list)) identifier_list <- list()
        
        # Add value to identifier list.
        identifier_list[[identifier_name]] <- value
        
        # Combine old and new identifiers.
        x@identifiers <- identifier_list
        
        return(x)
      },
      x = x,
      identifier_name = identifier_name)
    
    return(data_elements)
  }
)



## add_data_element_identifier (general) ---------------------------------------
setMethod(
  "add_data_element_identifier",
  signature(x = "ANY"),
  function(x, ...) {
    return(NULL)
  }
)


# add_data_element_bootstrap methods -------------------------------------------

## add_data_element_bootstrap (list) -------------------------------------------
setMethod(
  "add_data_element_bootstrap",
  signature(x = "list"),
  function(
    x,
    n_bootstraps, 
    n_instances, 
    bootstrap_seed_offset, 
    ...) {
    
    if (n_bootstraps > 0) {
      # Repeat elements.
      data_element <- rep(x, each = n_bootstraps)
      
      # Set bootstrap to TRUE
      bootstrap <- rep(TRUE, times = length(x) * n_bootstraps)
      
      # Set the seeds for the bootstraps to allow for reproducibility.
      bootstrap_seed <- rep(seq(n_bootstraps) + bootstrap_seed_offset, times = length(x))
      
      # Iterate over elements to check whether a point estimate should
      # be computed in addition.
      for (current_element in x) {
        if (current_element@detail_level %in% c("ensemble", "model") &&
           current_element@estimation_type %in% c("bci", "bootstrap_confidence_interval")) {
          
          # Add a new element that estimates the point estimate.
          new_element <- current_element
          new_element@estimation_type <- "point"
          
          # Add the element to the list of elements.
          data_element <- c(data_element, new_element)
          bootstrap <- c(bootstrap, FALSE)
          bootstrap_seed <- c(bootstrap_seed, NA)
        }
      }
      
    } else {
      # Use the list x of data_elements.
      data_element <- x
      
      # No bootstraps need to be created.
      bootstrap <- rep(FALSE, times = length(x))
      
      # No seed is set
      bootstrap_seed <- rep(NA, times = length(x))
    }
    
    return(list(
      "data_element" = data_element,
      "bootstrap" = bootstrap,
      "seed" = bootstrap_seed))
  }
)



## add_data_element_bootstrap (familiarDataElement) ----------------------------
setMethod(
  "add_data_element_bootstrap",
  signature(x = "familiarDataElement"),
  function(x, ...) {
    
    return(add_data_element_bootstrap(x = list(x), ...))
  }
)



# .identifier_as_data_attribute ------------------------------------------------
setMethod(
  ".identifier_as_data_attribute",
  signature(x = "familiarDataElement"),
  function(
    x, 
    identifier, 
    as_grouping_column = TRUE) {
    
    if (length(identifier) == 0) {
      ..error_reached_unreachable_code(
        ".identifier_as_data_attribute: Cannot pass an empty identifier.")
    }
    
    # If an "all" value is passed (e.g. during export), all identifiers are
    # added to the data.
    if (any(identifier == "all")) identifier <- names(x@identifiers)
    
    # Determine which of the identifiers is actually present. If none are
    # present, return x.
    identifier_present <- intersect(identifier, names(x@identifiers))
    if (length(identifier_present) == 0) return(x)
    
    if (as_grouping_column) {
      x@grouping_column <- unique(c(x@grouping_column, identifier_present))
    }
    
    # Determine the indices of the selected list elements.
    identifier_index <- which(names(x@identifiers) %in% identifier_present)
    
    # Find values.
    identifier_values <- x@identifiers[identifier_index]
    
    # Remove identifiers from list.
    x@identifiers[identifier_index] <- NULL
    
    if (data.table::is.data.table(x@data)) {
      # The data element is a data.table.
      
      # Make a local copy to avoid updating by reference.
      x@data <- data.table::copy(x@data)
      
      # Iterate over identifier names.
      for (id_name in names(identifier_values)) {
        # Add identifier to the dataset.
        data.table::set(
          x = x@data,
          j = id_name,
          value = identifier_values[[id_name]])
      }
      
    } else if (is.list(x@data)) {
      # Determine the number of instances in x@data
      n_instances <- length(x@data[[1]])
      
      new_data <- lapply(
        identifier_values,
        function(x, n) (rep(x, times = n)),
        n = n_instances)
      names(new_data) <- names(identifier_values)
      
      # Add identifiers to the list.
      x@data <- c(x@data, new_data)
    }
    
    return(x)
  }
)



# identify_element_sets methods ------------------------------------------------

## identify_element_sets (list) ------------------------------------------------
setMethod(
  "identify_element_sets",
  signature(x = "list"),
  function(x, drop_identiers = NULL, ...) {
    
    # Check that that the list is not empty.
    if (is_empty(x)) return(NULL)
    
    # Check for empty elements.
    empty_elements <- sapply(x, is_empty)
    if (all(empty_elements)) return(NULL)
    
    # Iterate over list.
    id_table <- mapply(
      identify_element_sets,
      x = x,
      ii = seq_along(x),
      MoreArgs = list(...),
      SIMPLIFY = FALSE)
    
    # Combine to table and add group ids and model ids.
    id_table <- data.table::rbindlist(id_table, use.names = TRUE)
    
    # Drop identifiers.
    if (!is.null(drop_identiers)) {
      
      # Check that 
      if (!all(drop_identiers %in% colnames(id_table))) {
        stop(paste0(
          "One or more identifiers to be dropped were not found in the table with identifiers: ",
          paste_s(setdiff(drop_identiers, colnames(id_table)))))
      }
      
      # Drop identifiers
      id_table[, (drop_identiers) := NULL]
      
      # Keep unique entries.
      id_table <- unique(id_table)
    }
    
    # Add group identifier.
    id_table[, "group_id" := .GRP, by = c(colnames(id_table))] 
    
    # Add element identifier.
    id_table[, "element_id" := .I]
    
    return(id_table)
  }
)



## identify_element_sets (familiarDataElement) ---------------------------------
setMethod(
  "identify_element_sets",
  signature(x = "familiarDataElement"),
  function(
    x,
    ii,
    ignore_estimation_type = FALSE,
    ignore_grouping_column = TRUE, 
    ignore_list_identifier = TRUE, 
    ...) {
    
    # Get the identifiers and the detail level and combine to a list.
    id_list <- c(
      x@identifiers,
      list(
        "detail_level" = x@detail_level,
        "object_class" = class(x)[1]))
    
    # Add the estimation type if it is not to be ignored.
    if (!ignore_estimation_type) {
      id_list <- c(id_list, list("estimation_type" = x@estimation_type))
    } 
    
    # Add data from grouping columns, if they are not to be ignored.
    if (!ignore_grouping_column && !is.null(x@grouping_column)) {
      id_list <- c(id_list, unique(x@data[, mget(x@grouping_column)]))
    }
    
    # Add list identifier.
    if (!ignore_list_identifier) {
      id_list <- c(id_list, "list_id" = ii)
    }
    
    return(data.table::as.data.table(id_list))
  }
)



## identify_element_sets (NULL) ------------------------------------------------
setMethod(
  "identify_element_sets",
  signature(x = "NULL"),
  function(x, ignore_estimation_type = FALSE, ...) {
    return(NULL)
  }
)



# merge_data_elements methods --------------------------------------------------

## merge_data_elements (list) --------------------------------------------------
setMethod(
  "merge_data_elements",
  signature(x = "list"),
  function(
    x,
    ...) {
    
    # Check that the list is not empty.
    if (is_empty(x)) return(NULL)
    
    # Flatten (nested) lists.
    x <- unlist(x)
    if (!is.list(x)) x <- list(x)
    
    # Check that at least one of the data elements in the list is not empty.
    if (all(sapply(x, is_empty))) return(NULL)
    
    # Create return list for data elements.
    data_element <- list()
    
    # Determine class of all elements
    element_classes <- sapply(x, class)
    
    # Iterate over unique classes.
    for (element_class in unique(element_classes)) {
      
      # Continue to next element class if all current data elements are empty.
      if (all(sapply(x[which(element_classes == element_class)], is_empty))) next
      
      # Create a proto data element to avoid having to pass larger objects
      # than required.
      proto_data_element <- x[which(element_classes == element_class)][[1]]
      proto_data_element@data <- NULL
      
      # Run familiarDataElement-specific analysis. This means that we pass
      # the prototype data element as x with the list of elements.
      data_element <- c(
        data_element,
        merge_data_elements(
          x = proto_data_element,
          x_list = x[which(element_classes == element_class)],
          ...))
    }
    
    # Assign a NULL to empty data
    if (is_empty(data_element)) data_element <- NULL
    
    return(data_element)
  }
)



## merge_data_elements (familiarDataElement) -----------------------------------
setMethod(
  "merge_data_elements",
  signature(x = "familiarDataElement"),
  function(
    x,
    x_list,
    as_data = NULL,
    as_grouping_column = TRUE,
    force_data_table = FALSE,
    ...) {
    
    # Move identifiers from the identifiers attribute to the data attribute. The
    # primary reason for doing so is to group and merge similar elements, byt
    # e.g. from different models.
    if (!is.null(as_data)) {
      x_list <- lapply(
        x_list,
        .identifier_as_data_attribute,
        identifier = as_data,
        as_grouping_column = as_grouping_column)
    }
    
    # Identify items that can be joined.
    id_table <- identify_element_sets(x = x_list, ...)
    
    # Identify the element identifiers that should be grouped.
    grouped_data_element_ids <- lapply(
      split(id_table[, c("element_id", "group_id")], by = "group_id"),
      function(id_table) (id_table$element_id))
    
    # List of data elements.
    data_elements <- list()
    
    for (current_group_data_element_ids in grouped_data_element_ids) {
      # Copy the first data element in the group and use it as a prototype.
      prototype_data_element <- x_list[[current_group_data_element_ids[1]]]
      
      # Check contents of the data elements.
      any_is_data_table <- any(sapply(
        x_list[current_group_data_element_ids],
        function(x) (data.table::is.data.table(x@data))))
      any_is_list <- any(sapply(
        x_list[current_group_data_element_ids],
        function(x) (rlang::is_bare_list(x@data))))
      all_is_empty <- all(sapply(
        x_list[current_group_data_element_ids],
        function(x) (is_empty(x@data))))
      
      if (any_is_data_table) {
        
        # Data attribute contains data.table.
        data_attribute <- lapply(
          x_list[current_group_data_element_ids],
          function(x) (x@data))
        
        # Combine data attributes.
        data_attribute <- suppressWarnings(
          data.table::rbindlist(
            data_attribute,
            use.names = TRUE,
            fill = TRUE))
        
        # Set data attribute.
        prototype_data_element@data <- data_attribute
        
      } else if (any_is_list) {
        
        # Data attribute contains data.table.
        element_names <- unique(unlist(lapply(
          x_list[current_group_data_element_ids],
          function(x) (names(x@data)))))
        
        # Iterate over different names in the list.
        data_attribute <- lapply(
          element_names,
          function(ii, x) {
            # Find values for the element.
            element_values <- unlist(lapply(
              x,
              function(x, ii) (x@data[[ii]]),
              ii = ii))
            
            return(element_values)
          },
          x = x_list[current_group_data_element_ids])
        
        # Set names.
        names(data_attribute) <- element_names
        
        # Force to data attribute.
        if (force_data_table) {
          data_attribute <- data.table::as.data.table(data_attribute)
        }
        
        # Set data attribute.
        prototype_data_element@data <- data_attribute
        
      } else if (all_is_empty) {
        # All data attributes are unset. We don't need to do anything.
        
      } else {
        # Unknown data type.
        ..error_reached_unreachable_code(paste0(
          "merge_data_elements,familiarDataElement: data attribute is neither ",
          "data.table, list, or empty."))
      }
      
      # Add merged data element to the list.
      data_elements <- c(data_elements, list(prototype_data_element))
    }
    
    return(data_elements)
  }
)



## merge_data_elements (NULL) --------------------------------------------------
setMethod(
  "merge_data_elements",
  signature(x = "NULL"),
  function(x, ...) {
    return(NULL)
  }
)



# collect methods --------------------------------------------------------------

## collect (list)-------------------------------------------------------------
setMethod(
  "collect",
  signature(x = "list"),
  function(
    x,
    data_slot,
    identifiers = c("data_set", "fs_method", "learner"),
    ...) {
    
    # Collect from all 
    collected_data_elements <- lapply(
      x,
      collect,
      data_slot = data_slot,
      identifiers = identifiers)
    
    # Flatten (nested) lists.
    collected_data_elements <- unlist(collected_data_elements)
    if (!is.list(collected_data_elements)) {
      collected_data_elements <- list(collected_data_elements)
    }
    
    # Select unique elements. First identify which elements are present.
    id_table <- identify_element_sets(collected_data_elements)
    
    # Check that the identifier table is not empty.
    if (is_empty(id_table)) return(NULL)
    
    # Identify the first element id in each group.
    unique_elements <- sapply(
      split(id_table, by = "group_id"),
      function(x) (head(x$element_id, n = 1L)))
    
    # Keep unique elements.
    collected_data_elements <- collected_data_elements[unique_elements]
    
    return(collected_data_elements)
  }
)



## collect (familiarData)-------------------------------------------------------
setMethod(
  "collect",
  signature(x = "familiarData"),
  function(x, data_slot, identifiers, ...) {
    
    # Collect data elements.
    collected_data_elements <- slot(x, name = data_slot)
    
    if (is_empty(collected_data_elements)) return(NULL)
    
    # Add elements
    if ("data_set" %in% identifiers) {
      collected_data_elements <- add_data_element_identifier(
        x = collected_data_elements,
        data_set = x@name)
    }
    
    if ("fs_method" %in% identifiers) {
      collected_data_elements <- add_data_element_identifier(
        x = collected_data_elements,
        fs_method = x@fs_method)
    }
    
    if ("learner" %in% identifiers) {
      collected_data_elements <- add_data_element_identifier(
        x = collected_data_elements,
        learner = x@learner)
    }
    
    return(collected_data_elements)
  }
)



# .export methods --------------------------------------------------------------

## .export (familiarCollection)-------------------------------------------------
setMethod(
  ".export",
  signature(x = "familiarCollection"),
  function(
    x,
    data_elements = NULL,
    data_slot = NULL,
    dir_path = NULL,
    type,
    subtype = NULL,
    object_class = NULL,
    export_collection = FALSE,
    ...) {
    
    # Obtain the data elements from the attribute slot indicated by data_slot.
    if (!is.null(data_slot)) data_elements <- slot(x, name = data_slot)
    
    # Check that the list is not empty.
    if (is_empty(data_elements)) return(NULL)
    
    # Flatten (nested) lists.
    data_elements <- unlist(data_elements)
    if (!is.list(data_elements)) data_elements <- list(data_elements)
    
    # Check that at least one of the data elements in the list is not
    # empty.
    empty_elements <- sapply(data_elements, is_empty)
    if (all(empty_elements)) return(NULL)
    
    # Remove empty elements.
    data_elements <- data_elements[!empty_elements]
    
    # Determine class of all non-empty elements.
    element_classes <- sapply(data_elements, class)
    
    if (!is.null(object_class)) {
      # Keep data elements that correspond 
      data_elements <- data_elements[element_classes == object_class]
      
      if (is_empty(data_elements)) return(NULL)
      
    } else if (data.table::uniqueN(element_classes) > 2) {
      ..error_reached_unreachable_code(paste0(
        ".export,familiarCollection: multiple data elements with different ",
        "classes found, whereas only one is expected."))
    }
    
    # Merge and aggregate data. Note that the method is dispatched based on the
    # first object.
    data_element <- .export(
      x = data_elements[[1]],
      x_list = data_elements,
      ...)
    
    # Apply labels.
    data_element <- .apply_labels(
      data = data_element,
      object = x)
    
    # Check that the data variable is not empty
    if (is_empty(data_element)) return(NULL)
    
    if (is.null(dir_path)) {
      # Export data.
      if (export_collection) {
        return(list(
          "collection" = x,
          "data" = data_element))
        
      } else {
        return(data_element)
      }
      
    } else {
      # Export to file
      .export_to_file(
        data = data_element,
        object = x,
        dir_path = dir_path,
        type = type,
        subtype = subtype)
      
      if (export_collection) {
        return(list("collection" = x))
        
      } else {
        return(NULL)
      }
    }
  }
)



## .export (familiarDataElement) -----------------------------------------------
setMethod(
  ".export",
  signature(x = "familiarDataElement"),
  function(x, x_list, aggregate_results = FALSE, ...) {
    
    if (aggregate_results) {
      x_list <- .compute_data_element_estimates(x_list)
    }
    
    # Merge data elements.
    x <- merge_data_elements(
      x = x_list,
      as_data = "all",
      as_grouping_column = TRUE,
      force_data_table = TRUE)
    
    return(x)
  }
)



# extract_dispatcher -----------------------------------------------------------

#'@title Internal function to dispatch extraction functions.
#'
#'@description This function provides a unified access point to extraction
#'  functions. Some of these functions require bootstrapping and result
#'  aggregation, which are handled here.
#'
#'@param FUN Extraction function or method to which data and parameters are
#'  dispatched.
#'@param object A `familiarEnsemble` object.
#'@param proto_data_element A `familiarDataElement` object, or an object that
#'  inherits from it.
#'@param aggregate_results A logical flag indicating whether results should be
#'  aggregated.
#'@param has_internal_bootstrap A logical flag that indicates whether `FUN` has
#'  internal bootstrapping capabilities.
#'
#'@inheritParams extract_data
#'
#'@details This function first determines how many data points need to be
#'  evaluated to complete the desired estimation, i.e. 1 for point estimates, 20
#'  for bias-corrected estimates, and 20 / (1 - confidence level) for bootstrap
#'  confidence intervals.
#'
#'  Subsequently, we determine the number of models. This number is used to set
#'  external or internal clusters, the number of bootstraps, and to evaluate
#'  whether the estimation can be done in case `FUN` does not support
#'  bootstrapping.
#'
#'@return A list of `familiarDataElement` objects.
#'@md
#'@keywords internal
setMethod(
  "extract_dispatcher",
  signature(
    object = "familiarEnsemble",
    proto_data_element = "familiarDataElement"),
  function(
    cl = NULL,
    FUN,
    object,
    proto_data_element,
    aggregate_results,
    has_internal_bootstrap,
    ...,
    message_indent = 0L,
    verbose = TRUE) {
    
    # Check that any models were trained.
    if (!model_is_trained(object)) return(NULL)
    
    # Determine the number of instances we need to find the estimates.
    if (proto_data_element@estimation_type == "point") {
      n_instances <- 1L
      
    } else if (proto_data_element@estimation_type %in% c("bias_correction", "bc")) {
      n_instances <- 20L
      
    } else if (proto_data_element@estimation_type %in% c("bootstrap_confidence_interval", "bci")) {
      n_instances <- ceiling(signif(20 / (1.00 - proto_data_element@confidence_level)))
    }
    
    # Determine the number of models we need to evaluate.
    if (proto_data_element@detail_level == "ensemble") {
      n_models <- 1L
      
    } else {
      n_models <- length(object@model_list)
    }
    
    # Check if the proposed analysis can be executed.
    if (!has_internal_bootstrap &&
       n_instances > 1L &&
       !(proto_data_element@detail_level == "hybrid" &&
         n_models >= n_instances)) {
      # The required number of instances cannot be created from models alone.
      
      # Add a message
      if (verbose) {
        message(paste0(
          "extract_dispatcher,familiarEnsemble,familiarDataElement: ",
          "too few models to compute confidence intervals."))
      } 
      
      # Set the detail level to ensemble.
      if (proto_data_element@detail_level == "hybrid") {
        # Only one ensemble model is formed.
        proto_data_element@detail_level <- "ensemble"
        n_models <- 1L
      } 
      
      # Set the estimation type to point estimates.
      proto_data_element@estimation_type <- "point"
      n_instances <- 1L
    } 
    
    # Determine the number of bootstraps that should be computed internally.
    if (has_internal_bootstrap) {
      if (proto_data_element@detail_level == "hybrid") {
        n_bootstraps <- ceiling(n_instances / n_models)
        n_instances <- n_models * n_bootstraps
        
      } else {
        n_bootstraps <- n_instances
      }
      
    } else {
      n_bootstraps <- 0L
    }
    
    # If one bootstrap is required, that means no bootstraps are required.
    if (n_bootstraps <= 1L) n_bootstraps <- 0L
    
    
    # Determine the number of parallel cluster nodes.
    n_nodes <- length(cl)
    
    # Determine whether we should perform parallel processing across
    # models or internally.
    if (n_nodes > 1) {
      if (n_models == 1) {
        # No need to perform parallelisation across models, when there is only 1
        # model.
        parallel_external <- FALSE
        
      } else if (n_bootstraps == 0) {
        # No need to perform internal parallelisation in case this is not
        # necessary. This check is hit when has_internal_bootstrap is false.
        parallel_external <- TRUE
        
      } else if (n_models >= 0.80 * n_nodes) {
        # Perform external parallelisation if the number of models would occupy
        # at least 80% of the nodes. This is because the parallel overhead in
        # any internal bootstrapping takes up more time.
        parallel_external <- TRUE
        
      } else if (n_models > n_bootstraps) {
        # Perform external parallelisation if the number of bootstraps would
        # underutilize the nodes compared to the number of nodes.
        parallel_external <- TRUE
        
      } else {
        parallel_external <- FALSE
      }
      
    } else {
      # Back-up when the number of nodes is 1 or none.
      parallel_external <- FALSE
    }
    
    # Message user concerning evaluation
    # - Type of estimation
    # - Which model(s)
    # - How many bootstraps each (if n models > 1), as well as total.
    # - If parallelisation takes place, and where.
    ..message_dispatcher_details(
      estimation_type = proto_data_element@estimation_type,
      detail_level = proto_data_element@detail_level,
      n_bootstraps = n_bootstraps,
      n_instances = n_instances,
      n_models = n_models,
      n_nodes = n_nodes,
      parallel_external = parallel_external,
      message_indent = message_indent,
      verbose = verbose)
    
    # Dispatch for ensemble models.
    if (proto_data_element@detail_level == "ensemble") {
      # Dispatch for results aggregated at the ensemble level.
      x <- .extract_dispatcher_ensemble(
        cl = cl,
        FUN = FUN,
        object = object,
        proto_data_element = proto_data_element,
        aggregate_results = aggregate_results,
        n_instances = n_instances,
        n_bootstraps = n_bootstraps,
        n_models = n_models,
        parallel_external = parallel_external,
        message_indent = message_indent,
        verbose = verbose,
        ...)
      
    } else if (proto_data_element@detail_level == "hybrid") {
      # Dispatch for results aggregated with hybrid details.
      x <- .extract_dispatcher_hybrid(
        cl = cl,
        FUN = FUN,
        object = object,
        proto_data_element = proto_data_element,
        aggregate_results = aggregate_results,
        n_instances = n_instances,
        n_bootstraps = n_bootstraps,
        n_models = n_models,
        parallel_external = parallel_external,
        message_indent = message_indent,
        verbose = verbose,
        ...)
      
    } else if (proto_data_element@detail_level == "model") {
      # Dispatch for results aggregated at the model level.
      x <- .extract_dispatcher_model(
        cl = cl,
        FUN = FUN,
        object = object,
        proto_data_element = proto_data_element,
        aggregate_results = aggregate_results,
        n_instances = n_instances,
        n_bootstraps = n_bootstraps,
        n_models = n_models,
        parallel_external = parallel_external,
        message_indent = message_indent,
        verbose = verbose,
        ...)
      
    } else {
      ..error_reached_unreachable_code(paste0(
        "extract_dispatcher: encountered an unknown detail_level attribute: ",
        proto_data_element@detail_level))
    }
    
    return(x)
  }
)



.extract_dispatcher_ensemble <- function(
    cl = NULL,
    FUN,
    object,
    proto_data_element,
    aggregate_results,
    n_instances,
    n_bootstraps,
    n_models,
    parallel_external,
    ...,
    verbose = FALSE) {
  
  # Add ensemble model name.
  proto_data_element <- add_model_name(
    proto_data_element,
    object = object)
  
  # Set flag for interval aggregation.
  aggregate_internal <- aggregate_results &&
    n_instances == n_bootstraps &&
    n_bootstraps > 0
  
  # Never perform outer-loop parallelisation when dispatching for ensemble-level
  # details.
  x <- FUN(
    cl = cl,
    object = object,
    bootstrap_seed_offset = 0,
    proto_data_element = proto_data_element,
    aggregate_results = aggregate_internal,
    n_instances = n_instances,
    n_bootstraps = n_bootstraps,
    n_models = n_models,
    verbose = verbose,
    progress_bar = verbose && n_bootstraps > 1,
    ...)
  
  # Pack to list.
  if (!is.list(x)) x <- list(x)
  
  # Merge data elements together.
  x <- merge_data_elements(x)
  
  # Aggregate results if required.
  if (aggregate_results) {
    x <- .compute_data_element_estimates(x)
  }
  
  return(x)
}



.extract_dispatcher_hybrid <- function(
    cl = NULL,
    FUN,
    object,
    proto_data_element,
    aggregate_results,
    n_instances,
    n_bootstraps,
    n_models,
    parallel_external,
    ...,
    verbose = FALSE) {
  
  # Add ensemble model name.
  proto_data_element <- add_model_name(proto_data_element, object = object)
  
  if (parallel_external) {
    x <- fam_mapply(
      cl = cl,
      FUN = FUN,
      object = object@model_list,
      bootstrap_seed_offset = seq(
        from = 0, 
        by = n_bootstraps,
        length.out = n_models),
      MoreArgs = c(
        list(
          "cl" = NULL,
          "proto_data_element" = proto_data_element,
          "aggregate_results" = FALSE,
          "n_instances" = n_instances,
          "n_bootstraps" = n_bootstraps,
          "n_models" = n_models,
          "verbose" = verbose,
          "progress_bar" = verbose && length(object@model_list) == 1 && n_bootstraps > 1),
        list(...)),
      progress_bar = verbose && length(object@model_list) > 1,
      chopchop = TRUE)
    
  } else {
    x <- fam_mapply(
      cl = NULL,
      FUN = FUN,
      object = object@model_list,
      bootstrap_seed_offset = seq(
        from = 0,
        by = n_bootstraps,
        length.out = n_models),
      MoreArgs = c(
        list(
          "cl" = cl,
          "proto_data_element" = proto_data_element,
          "aggregate_results" = FALSE,
          "n_instances" = n_instances,
          "n_bootstraps" = n_bootstraps,
          "n_models" = n_models,
          "verbose" = verbose,
          "progress_bar" = verbose && n_models == 1 && n_bootstraps > 1),
        list(...)),
      progress_bar = verbose && n_models > 1)
  }
  
  # Merge data elements together. The model_name identifier gets added as data
  # instead, but not as a grouping column.
  x <- merge_data_elements(
    x,
    as_data = "model_name",
    as_grouping_column = FALSE)
  
  # Create point estimate from the data.
  if (proto_data_element@estimation_type %in% c("bootstrap_confidence_interval", "bci")) {
    x <- .add_point_estimate_from_elements(x)
  }
  
  # Aggregate results if required.
  if (aggregate_results) {
    x <- .compute_data_element_estimates(x)
  }
  
  return(x)
}



.extract_dispatcher_model <- function(
    cl = NULL,
    FUN,
    object,
    proto_data_element,
    aggregate_results,
    n_instances,
    n_bootstraps,
    n_models,
    parallel_external,
    ...,
    verbose = FALSE) {
  
  # Create a list of data-elements.
  proto_data_element <- rep.int(
    list(proto_data_element),
    times = length(object@model_list))
  
  # Add model (not ensemble) names to the prototype data elements.
  proto_data_element <- mapply(
    add_model_name,
    data = proto_data_element,
    object = object@model_list)
  
  # Set flag for interval aggregation.
  aggregate_internal <- aggregate_results && n_instances == n_bootstraps && n_bootstraps > 0
  
  if (parallel_external) {
    x <- fam_mapply(
      cl = cl,
      FUN = FUN,
      object = object@model_list,
      bootstrap_seed_offset = seq(
        from = 0,
        by = n_bootstraps,
        length.out = n_models),
      proto_data_element = proto_data_element,
      MoreArgs = c(
        list(
          "cl" = NULL,
          "aggregate_results" = aggregate_internal,
          "n_instances" = n_instances,
          "n_bootstraps" = n_bootstraps,
          "n_models" = n_models,
          "verbose" = verbose,
          "progress_bar" = verbose && n_models == 1 && n_bootstraps > 1),
        list(...)),
      progress_bar = verbose & length(object@model_list) > 1,
      chopchop = TRUE)
    
  } else {
    x <- fam_mapply(
      cl = NULL,
      FUN = FUN,
      object = object@model_list,
      bootstrap_seed_offset = seq(
        from = 0,
        by = n_bootstraps,
        length.out = n_models),
      proto_data_element = proto_data_element,
      MoreArgs = c(
        list(
          "cl" = cl,
          "aggregate_results" = aggregate_internal,
          "n_instances" = n_instances,
          "n_bootstraps" = n_bootstraps,
          "n_models" = n_models,
          "verbose" = verbose,
          "progress_bar" = verbose && n_models == 1 && n_bootstraps > 1),
        list(...)),
      progress_bar = verbose && length(object@model_list) > 1)
  }
  
  # Merge data elements together.
  x <- merge_data_elements(x)
  
  # Aggregate results if required.
  if (aggregate_results) {
    x <- .compute_data_element_estimates(x)
  }
  
  return(x)
}



# .add_point_estimate_from_elements methods ------------------------------------

## .add_point_estimate_from_elements (list) ------------------------------------
setMethod(
  ".add_point_estimate_from_elements",
  signature(x = "list"),
  function(x, ...) {
    # Create return list for data elements.
    data_element <- list()
    
    # Determine class of all elements
    element_classes <- sapply(x, class)
    
    # Iterate over unique classes.
    for (element_class in unique(element_classes)) {
      
      # Create a proto data element to avoid having to pass larger objects
      # than required.
      proto_data_element <- x[which(element_classes == element_class)][[1]]
      proto_data_element@data <- NULL
      
      # Run familiarDataElement-specific analysis. This means that we pass
      # the prototype data element as x with the list of elements.
      data_element <- c(
        data_element,
        .add_point_estimate_from_elements(
          x = proto_data_element,
          x_list = x[which(element_classes == element_class)],
          ...))
    }
    
    # Check that any data elements were added.
    if (is_empty(data_element)) return(NULL)
    
    return(data_element)
  }
)


## .add_point_estimate_from_elements (familiarDataElement) ---------------------
setMethod(
  ".add_point_estimate_from_elements",
  signature(x = "familiarDataElement"),
  function(x, x_list = NULL, ...) {
    
    # It might be that x was only used to direct to this method.
    if (!is.null(x_list)) x <- x_list
    if (!is.list(x)) x <- list(x)
    
    # Find any unique elements that have not been aggregated and are not empty.
    id_table <- identify_element_sets(x, ignore_estimation_type = TRUE)
    
    # If no identifier table is generated, this means that the dataset is empty,
    # and a NULL should be returned.
    if (is_empty(id_table)) return(NULL)
    
    # Identify the element identifiers that should be grouped.
    grouped_data_element_ids <- lapply(
      split(id_table[, c("element_id", "group_id")], by = "group_id"),
      function(id_table) (id_table$element_id))
    
    # List of data elements.
    data_elements <- list()
    
    for (current_group_data_element_ids in grouped_data_element_ids) {
      
      # Check that there is no point estimate present in the current table.
      any_point_estimate <- any(sapply(
        x[current_group_data_element_ids],
        function(x) (x@estimation_type == "point")))
      if (any_point_estimate) next
      
      # Set conversion back to list, in case this is required.
      data_as_list <- FALSE
      
      # Copy the first data element in the group and use it as a prototype.
      prototype_data_element <- x[[current_group_data_element_ids[1]]]
      
      # Set point estimate.
      prototype_data_element@estimation_type <- "point"
      
      # Check if all data are empty.
      all_data_empty <- all(sapply(
        x[current_group_data_element_ids],
        function(x) (is_empty(x@data))))
      
      if (all_data_empty) {
        # Add empty element to data_elements and skip to the next
        data_elements <- c(data_elements, list(prototype_data_element))
        
        next
      }
      
      # Extract the data.
      any_is_data_table <- any(sapply(
        x[current_group_data_element_ids],
        function(x) (data.table::is.data.table(x@data))))
      any_is_list <- any(sapply(
        x[current_group_data_element_ids],
        function(x) (rlang::is_bare_list(x@data))))
      
      if (any_is_data_table) {
        # Data attribute contains data.table.
        data <- lapply(
          x[current_group_data_element_ids],
          function(x) (x@data))
        
      } else if (any_is_list) {
        # Convert all lists to data tables.
        data <- lapply(
          x[current_group_data_element_ids],
          function(x) (data.table::as.data.table(x@data)))
        
        # Convert back to list in the end.
        data_as_list <- TRUE
      }
      
      # Combine data attributes.
      data <- data.table::rbindlist(
        data,
        use.names = TRUE,
        fill = TRUE)
      
      if (length(prototype_data_element@grouping_column) > 0) {
        # Compute the mean value as point estimate.
        data <- data[, lapply(.SD, get_estimate, na.rm = TRUE),
                     by = c(prototype_data_element@grouping_column),
                     .SDcols = c(prototype_data_element@value_column)]
        
      } else {
        data <- data[, lapply(.SD, get_estimate, na.rm = TRUE),
                     .SDcols = c(prototype_data_element@value_column)]
      }
      
      # Convert to list again, if necessary.
      if (data_as_list) data <- as.list(data)
      
      # Update data attribute with point estimate.
      prototype_data_element@data <- data
      
      # Add merged data element to the list.
      data_elements <- c(data_elements, list(prototype_data_element))
    }
    
    return(c(x, data_elements))
  }
)


## .add_point_estimate_from_elements (NULL) ------------------------------------
setMethod(
  ".add_point_estimate_from_elements",
  signature(x = "NULL"),
  function(x, ...) {
    return(NULL)
  }
)



# .compute_data_element_estimates methods --------------------------------------

## .compute_data_element_estimates (list) --------------------------------------
setMethod(
  ".compute_data_element_estimates",
  signature(x = "list"),
  function(x, ...) {
    
    # Create return list for data elements.
    data_element <- list()
    
    # Determine class of all elements
    element_classes <- sapply(x, class)
    
    # Iterate over unique classes.
    for (element_class in unique(element_classes)) {
      
      # Create a proto data element to avoid having to pass larger objects than
      # required.
      proto_data_element <- x[which(element_classes == element_class)][[1]]
      proto_data_element@data <- NULL
      
      # Run familiarDataElement-specific analysis. This means that we pass the
      # prototype data element as x with the list of elements.
      data_element <- c(
        data_element,
        .compute_data_element_estimates(
          x = proto_data_element,
          x_list = x[which(element_classes == element_class)],
          ...))
    }
    
    if (is_empty(data_element)) return(NULL)
    
    return(data_element)
  }
)



## .compute_data_element_estimates (familiarDataElement) -----------------------
setMethod(
  ".compute_data_element_estimates",
  signature(x = "familiarDataElement"),
  function(x, x_list = NULL, ...) {
    
    # It might be that x was only used to direct to this method.
    if (!is.null(x_list)) x <- x_list
    if (!is.list(x)) x <- list(x)
    
    # Merge data.
    data_elements <- merge_data_elements(x = x)
    
    # Find any data elements that were already aggregated and keep these apart.
    is_aggregated <- sapply(
      data_elements,
      function(x) (x@is_aggregated))
    
    if (all(is_aggregated)) return(data_elements)
    
    # Continue with unaggregated data elements.
    unaggregated_data_elements <- data_elements[!is_aggregated]
    data_elements <- data_elements[is_aggregated]
    
    # Find any unique elements that have not been aggregated.
    id_table <- identify_element_sets(
      unaggregated_data_elements,
      ignore_estimation_type = TRUE)
    
    # Identify the element identifiers that should be grouped.
    grouped_data_element_ids <- lapply(
      split(id_table[, c("element_id", "group_id")], by = "group_id"),
      function(id_table) (id_table$element_id))
    
    # Aggregate unaggregated data.
    for (current_group_data_element_ids in grouped_data_element_ids) {
      
      # Select data elements corresponding to the current group.
      current_data_elements <- unaggregated_data_elements[current_group_data_element_ids]
      
      # Compute estimates.
      aggregated_data_element <- ..compute_data_element_estimates(
        x = current_data_elements, ...)
      
      if (is.null(aggregated_data_element)) next
      
      # Update the is_aggregated attribute.
      aggregated_data_element@is_aggregated <- TRUE
      
      # Add aggregated element.
      data_elements <- c(data_elements, list(aggregated_data_element))
    }
    
    if (is_empty(data_elements)) return(NULL)
    
    return(data_elements)
  }
)


## .compute_data_element_estimates (NULL) --------------------------------------
setMethod(
  ".compute_data_element_estimates",
  signature(x = "NULL"),
  function(x, ...) {
    return(NULL)
  }
)



# ..compute_data_element_estimates methods -------------------------------------

## ..compute_data_element_estimates (list) -------------------------------------
setMethod(
  "..compute_data_element_estimates",
  signature(x = "list"),
  function(x, ...) {
    
    # Create a proto data element to avoid having to pass larger objects than
    # required.
    proto_data_element <- x[[1]]
    proto_data_element@data <- NULL
    
    return(..compute_data_element_estimates(
      x = proto_data_element,
      x_list = x,
      ...))
  }
)


## ..compute_data_element_estimates (familiarDataElement) ----------------------
setMethod(
  "..compute_data_element_estimates",
  signature(x = "familiarDataElement"),
  function(x, x_list = NULL, ...) {
    
    # Suppress NOTES due to non-standard evaluation in data.table
    n_group <- NULL
    
    # It might be that x was only used to direct to this method.
    if (!is.null(x_list)) x <- x_list
    if (!is.list(x)) x <- list(x)
    
    # Identify the estimation types of the current data elements.
    estimation_type <- sapply(x, function(x) (x@estimation_type))
    
    if (any(sapply(x, is_empty))) {
      # Don't aggregate empty elements.
      y <- x[[1]]
      
    } else if (any(estimation_type %in% c("bci", "bootstrap_confidence_interval"))) {
      
      # Check the number of elements.
      if (length(estimation_type) != 2L) {
        ..error_reached_unreachable_code(paste0(
          ".compute_data_element_estimates: exactly two data elements are ",
          "required for bootstrap confidence intervals."))
      }
      
      if (!any(estimation_type %in% c("point"))) {
        ..error_reached_unreachable_code(paste0(
          ".compute_data_element_estimates: a point estimate is required for ",
          "bootstrap confidence intervals."))
      }
      
      # Select point estimate.
      point_values <- data.table::as.data.table(
        x[estimation_type == "point"][[1]]@data)
      point_values[, "estimation_type" := "point"]
      
      # Select bootstrap values
      bootstrap_values <- data.table::as.data.table(
        x[estimation_type %in% c("bci", "bootstrap_confidence_interval")][[1]]@data)
      bootstrap_values[, "estimation_type" := "bootstrap_confidence_interval"]
      
      # Combine to single table.
      data <- data.table::rbindlist(
        list(point_values, bootstrap_values),
        use.names = TRUE,
        fill = TRUE)
      
      if (length(x[[1]]@grouping_column > 0)) {
        
        # Split table by grouping column and compute estimate and confidence
        # intervals.
        data <- lapply(
          split(data, by = x[[1]]@grouping_column, drop = TRUE),
          ..compute_bootstrap_confidence_estimate,
          confidence_level = x[[1]]@confidence_level,
          bootstrap_ci_method = x[[1]]@bootstrap_ci_method,
          value_column = x[[1]]@value_column,
          grouping_column = x[[1]]@grouping_column)
        
        # Combine to single table
        data <- data.table::rbindlist(
          data,
          use.names = TRUE,
          fill = TRUE)
        
      } else {
        # Compute in absence of grouping columns.
        data <- ..compute_bootstrap_confidence_estimate(
          x = data,
          confidence_level = x[[1]]@confidence_level,
          bootstrap_ci_method = x[[1]]@bootstrap_ci_method,
          value_column = x[[1]]@value_column)
      }
      
      # Update the data attribute.
      y <- x[estimation_type %in% c("bci", "bootstrap_confidence_interval")][[1]]
      y@data <- data
      
      # Update value column
      y@value_column <- setdiff(
        names(y@data),
        y@grouping_column)
      
    } else if (any(estimation_type %in% c("bc", "bias_correction"))) {
      
      # Check the number of elements.
      if (length(estimation_type) != 1L) {
        ..error_reached_unreachable_code(paste0(
          ".compute_data_element_estimates: exactly one data element is required ",
          "for bias corrected estimates."))
      }
      
      # Select values.
      bootstrap_values <- data.table::as.data.table(
        x[estimation_type %in% c("bc", "bias_correction")][[1]]@data)
      
      if (length(x[[1]]@grouping_column > 0)) {
        # Split table by grouping column and compute bias corrected estimate.
        data <- lapply(
          split(bootstrap_values, by = x[[1]]@grouping_column, drop = TRUE),
          ..compute_bias_corrected_estimate,
          value_column = x[[1]]@value_column,
          grouping_column = x[[1]]@grouping_column)
        
        # Combine to single table
        data <- data.table::rbindlist(
          data,
          use.names = TRUE,
          fill = TRUE)
        
      } else {
        # Compute in absence of grouping columns.
        data <- ..compute_bias_corrected_estimate(
          x = bootstrap_values,
          value_column = x[[1]]@value_column)
      }
      
      # Update the data attribute.
      y <- x[[1]]
      y@data <- data
      
      # Update value column
      y@value_column <- setdiff(
        names(y@data),
        y@grouping_column)
      
    } else if (any(estimation_type %in% c("point"))) {
      # This follows the same procedure as for bias-corrected estimates. For
      # ensemble and hybrid detail levels a single value needs to be generated.
      # However, in the case of hybrid detail level, a point estimate is created
      # for each model, and requires aggregation.
      
      # Check the number of elements.
      if (length(estimation_type) != 1L) {
        ..error_reached_unreachable_code(paste0(
          ".compute_data_element_estimates: exactly one data element is ",
          "required for point estimates."))
      }
      
      # Find grouping columns.
      grouping_columns <- x[[1]]@grouping_column
      if (length(grouping_columns) == 0) grouping_columns <- NULL
      
      # Find value columns.
      value_columns <- x[[1]]@value_column
      
      # Select values.
      bootstrap_values <- data.table::as.data.table(
        x[estimation_type %in% c("point")][[1]]@data)[, mget(c(grouping_columns, value_columns))]
      
      # Refine a bit so that only those entries with multiple values for the
      # same grouping columns are aggregated. This can save a lot of time,
      # because the point estimate typically is determined only on a single run.
      bootstrap_values[, "n_group" := .N, by = grouping_columns]
      
      # Select data based on single/multiple entries. Keep only relevant
      # columns, namely grouping and value columns, to ensure that both
      # unique_values and bootstrap_values will be processed the same way.
      unique_values <- bootstrap_values[n_group == 1, mget(c(grouping_columns, value_columns))]
      bootstrap_values <- bootstrap_values[n_group > 1, mget(c(grouping_columns, value_columns))]
      
      if (is_empty(bootstrap_values)) {
        # Data are unique values.
        data <- unique_values
        
      } else if (length(grouping_columns) > 0) {
        # Split table by grouping column and compute bias corrected estimate.
        data <- lapply(
          split(bootstrap_values, by = grouping_columns, drop = TRUE),
          ..compute_bias_corrected_estimate,
          value_column = value_columns,
          grouping_column = grouping_columns)
        
        # Combine to single table
        data <- data.table::rbindlist(
          c(list(unique_values), data),
          use.names = TRUE,
          fill = TRUE)
        
      } else {
        # Compute in absence of grouping columns.
        data <- ..compute_bias_corrected_estimate(
          x = bootstrap_values,
          value_column = value_columns)
        
        # Combine to single table
        data <- data.table::rbindlist(
          c(list(unique_values), list(data)),
          use.names = TRUE,
          fill = TRUE)
      }
      
      # Update the data attribute.
      y <- x[[1]]
      y@data <- data
      
      # Update value column
      y@value_column <- setdiff(
        names(y@data),
        y@grouping_column)
      
    } else {
      ..error_reached_unreachable_code(paste0(
        ".compute_data_element_estimates: unknown estimation type: ",
        paste_s(estimation_type)))
    }
    
    return(y)
  }
)


## ..compute_data_element_estimates (NULL) -------------------------------------
setMethod(
  "..compute_data_element_estimates",
  signature(x = "NULL"),
  function(x, ...) {
    return(NULL)
  }
)



..compute_bootstrap_confidence_estimate <- function(
    x,
    value_column, 
    confidence_level,
    bootstrap_ci_method,
    grouping_column = NULL) {
  
  # Suppress NOTES due to non-standard evaluation in data.table
  estimation_type <- NULL
  
  # Construct NULL table.
  ci_estimate <- data.table::data.table()
  
  # Fill value list.
  value_list <- list()
  value_column_names <- character(0L)
  for (ii in seq_along(value_column)) {
    # Compute the estimate and its bootstrap confidence interval.
    temp_estimate <- ..bootstrap_ci(
      x = x[estimation_type == "bootstrap_confidence_interval"][[value_column[ii]]],
      x_0 = x[estimation_type == "point"][[value_column[ii]]],
      confidence_level = confidence_level,
      bootstrap_ci_method = bootstrap_ci_method)
    
    # Determine column names that should be assigned.
    if (length(temp_estimate) == 3) {
      
      if (length(value_column) == 1) {
        value_column_names <- c(
          value_column_names,
          value_column[ii], "ci_low", "ci_up")
        
      } else {
        value_column_names <- c(
          value_column_names,
          value_column[ii],
          paste0(value_column[ii], "_ci_low"),
          paste0(value_column[ii], "_ci_up"))
      }
      
    } else {
      value_column_names <- c(
        value_column_names,
        value_column[ii])
    }
    
    # Set to value list
    value_list[[ii]] <- temp_estimate
  }

  # Flatten list and then re-list
  value_list <- unlist(value_list, recursive = FALSE)
  if (!is.list(value_list)) value_list <- as.list(value_list)
  
  # Assign to table.
  ci_estimate[, c(value_column_names) := value_list]
  
  # Add in grouping columns, if any.
  if (length(grouping_column) > 0) {
    ci_estimate <- cbind(
      head(x[, mget(grouping_column)], n = 1L),
      ci_estimate)
  }
  
  return(ci_estimate)
}



..compute_bias_corrected_estimate <- function(
    x,
    value_column,
    grouping_column = NULL) {
  
  # Construct NULL table.
  bc_estimate <- data.table::data.table()
  
  # Fill value list.
  value_list <- list()
  for (ii in seq_along(value_column)) {
    value_list[[ii]] <- ..bootstrap_bias_correction(x = x[[value_column[ii]]])$median
  }
  
  # Assign to table.
  bc_estimate[, c(value_column) := value_list]
  
  # Add in grouping columns, if any.
  if (length(grouping_column) > 0) {
    bc_estimate <- cbind(
      head(x[, mget(grouping_column)], n = 1L),
      bc_estimate)
  }
  
  return(bc_estimate)
}



..message_dispatcher_details <- function(
    estimation_type,
    detail_level,
    n_bootstraps,
    n_instances,
    n_models,
    n_nodes,
    parallel_external,
    message_indent,
    verbose) {
  
  # Skip if the dispatcher is not verbose.
  if (!verbose) return(NULL)
  
  # Set the estimator string.
  estimator_str <- switch(
    estimation_type,
    "point" = "point estimate",
    "bc" = "bias-corrected estimate",
    "bias_correction" = "bias-corrected estimate",
    "bci" = "bias-corrected estimate with confidence interval",
    "bootstrap_confidence_interval" = "bias-corrected estimate with confidence interval")
  
  # Set the detail level string.
  detail_level_str <- switch(
    detail_level,
    "ensemble" = "the ensemble model as a whole. ",
    "hybrid" = paste0(
      "the ensemble model from the ",
      ifelse(
        n_models > 1,
        paste0(n_models, " underlying models. "),
        paste0("single underlying model. "))),
    "model" = paste0(
      ifelse(
        n_models > 1,
        paste0("each of the ", n_models, " models"),
        paste0("the single model")),
      " in the ensemble. "))
  
  # Bootstraps.
  if (n_bootstraps > 0L) {
    bootstrap_str <- paste0(
      n_bootstraps, " bootstrap samples are obtained ",
      ifelse(
        n_models > 1L,
        paste0("for each model (total: ", n_instances, "). "),
        "in total. "))
    
  } else {
    bootstrap_str <- ""
  }
  
  # Parallelisation.
  if (n_nodes > 1L) {
    if (parallel_external) {
      parallel_str <- paste0("Computation is parallelised over models.")
      
    } else {
      parallel_str <- paste0("Computation is parallelised over bootstraps.")
    }
    
  } else {
    parallel_str <- ""
  }
  
  logger_message(
    paste0(
      "Computing the ",
      estimator_str,
      " of the value(s) of interest for ",
      detail_level_str,
      bootstrap_str,
      parallel_str),
    indent = message_indent,
    verbose = verbose)
  
  return(invisible(NULL))
}

Try the familiar package in your browser

Any scripts or data that you put into this service are public.

familiar documentation built on Sept. 30, 2024, 9:18 a.m.