Nothing
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_corelearn_gini_vimp_method(show_general = TRUE))
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_corelearn_mdl_vimp_method(show_general = TRUE))
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_corelearn_relieff_exp_rank_vimp_method(show_general = TRUE))
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_corelearn_gain_ratio_vimp_method(show_general = TRUE))
# Don't perform any further tests on CRAN due to running time.
testthat::skip_on_cran()
testthat::skip_on_ci()
familiar:::test_hyperparameter_optimisation(
vimp_methods = familiar:::.get_available_corelearn_gini_vimp_method(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
familiar:::test_all_vimp_methods(
familiar:::.get_available_corelearn_gini_vimp_method(show_general = FALSE))
familiar:::test_all_vimp_methods_parallel(
familiar:::.get_available_corelearn_gini_vimp_method(show_general = FALSE))
familiar:::test_hyperparameter_optimisation(
vimp_methods = familiar:::.get_available_corelearn_mdl_vimp_method(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
familiar:::test_all_vimp_methods(
familiar:::.get_available_corelearn_mdl_vimp_method(show_general = FALSE))
familiar:::test_all_vimp_methods_parallel(
familiar:::.get_available_corelearn_mdl_vimp_method(show_general = FALSE))
familiar:::test_hyperparameter_optimisation(
vimp_methods = familiar:::.get_available_corelearn_relieff_exp_rank_vimp_method(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
familiar:::test_all_vimp_methods(
familiar:::.get_available_corelearn_relieff_exp_rank_vimp_method(show_general = FALSE))
familiar:::test_all_vimp_methods_parallel(
familiar:::.get_available_corelearn_relieff_exp_rank_vimp_method(show_general = FALSE))
familiar:::test_hyperparameter_optimisation(
vimp_methods = familiar:::.get_available_corelearn_gain_ratio_vimp_method(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
familiar:::test_all_vimp_methods(
familiar:::.get_available_corelearn_gain_ratio_vimp_method(show_general = FALSE))
familiar:::test_all_vimp_methods_parallel(
familiar:::.get_available_corelearn_gain_ratio_vimp_method(show_general = FALSE))
# Count outcome ----------------------------------------------------------------
data <- familiar:::test_create_good_data("count")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "relieff_exp_rank",
vimp_method_parameter_list = NULL,
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple"
)
testthat::test_that(paste0(
"RReliefF exponentially decreasing ranks method correctly ranks count data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage", "avg_rooms")))
})
# Continuous outcome -----------------------------------------------------------
data <- familiar:::test_create_good_data("continuous")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "relieff_exp_rank",
vimp_method_parameter_list = NULL,
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0(
"RReliefF exponentially decreasing ranks method correctly ranks continuous data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c("avginc", "calwpct")))
})
# Binomial outcome -------------------------------------------------------------
data <- familiar:::test_create_good_data("binomial")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "relieff_exp_rank",
vimp_method_parameter_list = NULL,
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0(
"RReliefF exponentially decreasing ranks method correctly ranks binomial data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"epithelial_cell_size", "cell_shape_uniformity", "clump_thickness", "bare_nuclei")))
})
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "gini",
vimp_method_parameter_list = NULL,
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0("The Gini method correctly ranks binomial data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness", "bare_nuclei", "normal_nucleoli")))
})
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "gain_ratio",
vimp_method_parameter_list = NULL,
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple"
)
testthat::test_that(paste0("The gain ratio method correctly ranks binomial data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness", "bare_nuclei")))
})
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "mdl",
vimp_method_parameter_list = NULL,
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0("The MDL method correctly ranks binomial data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness", "bare_nuclei", "normal_nucleoli")), TRUE)
})
# Multinomial outcome ----------------------------------------------------------
data <- familiar:::test_create_good_data("multinomial")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "relieff_exp_rank",
vimp_method_parameter_list = NULL,
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0(
"RReliefF exponentially decreasing ranks method correctly ranks multinomial outcome data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c("Petal_Length", "Petal_Width")))
})
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "gini",
vimp_method_parameter_list = NULL,
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0("The Gini method correctly ranks multinomial outcome data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"Petal_Length", "Petal_Width", "Sepal_Length")))
})
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "gain_ratio",
vimp_method_parameter_list = NULL,
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0("The gain ratio method correctly ranks multinomial outcome data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"Petal_Length", "Petal_Width", "Sepal_Length")))
})
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "mdl",
vimp_method_parameter_list = NULL,
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(paste0("The MDL method correctly ranks multinomial outcome data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"Petal_Length", "Petal_Width", "Sepal_Length")))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.