Description Usage Arguments Details Author(s) References See Also Examples
Compute Goodness of Fit distances between models when removing the i_{th} case. If mirt is used, then the values will be associated with the unique response patterns instead.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
data |
matrix or data.frame |
model |
if a single numeric number declares number of factors to extract in
exploratory factor analysis (requires complete dataset, i.e., no missing).
If |
M2 |
logical; use the M2 statistic for when using mirt objects instead of G2? |
progress |
logical; display the progress of the computations in the console? |
... |
additional parameters to be passed |
x |
an object of class |
ncases |
number of extreme cases to display |
digits |
number of digits to round in the printed result |
y |
a |
main |
the main title of the plot |
type |
type of plot to use, default displays points and lines |
ylab |
the y label of the plot |
absolute |
logical; use absolute values instead of deviations? |
Note that GOF
is not limited to confirmatory factor analysis and
can apply to nearly any model being studied
where detection of influential observations is important.
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P. & Flora, D. B. (2015). faoutlier: An R Package for Detecting Influential Cases in Exploratory and Confirmatory Factor Analysis. Applied Psychological Measurement, 39, 573-574. doi: 10.1177/0146621615597894
Flora, D. B., LaBrish, C. & Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Psychology, 3, 1-21. doi: 10.3389/fpsyg.2012.00055
gCD
, LD
, obs.resid
,
robustMD
, setCluster
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | ## Not run:
#run all GOF functions using multiple cores
setCluster()
#Exploratory
nfact <- 3
(GOFresult <- GOF(holzinger, nfact))
(GOFresult.outlier <- GOF(holzinger.outlier, nfact))
plot(GOFresult)
plot(GOFresult.outlier)
## include a progress bar
GOFresult <- GOF(holzinger, nfact, progress = TRUE)
#-------------------------------------------------------------------
#Confirmatory with sem
model <- sem::specifyModel()
F1 -> Remndrs, lam11
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam42
F2 -> MxdArit, lam52
F2 -> OddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, lam83
F3 -> Hatchts, lam93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1
(GOFresult <- GOF(holzinger, model))
(GOFresult.outlier <- GOF(holzinger.outlier, model))
plot(GOFresult)
plot(GOFresult.outlier)
#-------------------------------------------------------------------
#Confirmatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdMean
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'
(GOFresult <- GOF(holzinger, model, orthogonal=TRUE))
(GOFresult.outlier <- GOF(holzinger.outlier, model, orthogonal=TRUE))
plot(GOFresult)
plot(GOFresult.outlier)
# categorical data with mirt
library(mirt)
data(LSAT7)
dat <- expand.table(LSAT7)
model <- mirt.model('F = 1-5')
result <- GOF(dat, model)
plot(result)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.