| GOF | R Documentation | 
Compute Goodness of Fit distances between models when removing the i_{th} case.
If mirt is used, then the values will be associated with the unique response patterns instead.
GOF(data, model, M2 = TRUE, progress = TRUE, ...)
## S3 method for class 'GOF'
print(x, ncases = 10, digits = 5, ...)
## S3 method for class 'GOF'
plot(
  x,
  y = NULL,
  main = "Goodness of Fit Distance",
  type = c("p", "h"),
  ylab = "GOF",
  absolute = FALSE,
  ...
)
data | 
 matrix or data.frame  | 
model | 
 if a single numeric number declares number of factors to extract in
exploratory factor analysis (requires complete dataset, i.e., no missing).
If   | 
M2 | 
 logical; use the M2 statistic for when using mirt objects instead of G2?  | 
progress | 
 logical; display the progress of the computations in the console?  | 
... | 
 additional parameters to be passed  | 
x | 
 an object of class   | 
ncases | 
 number of extreme cases to display  | 
digits | 
 number of digits to round in the printed result  | 
y | 
 a   | 
main | 
 the main title of the plot  | 
type | 
 type of plot to use, default displays points and lines  | 
ylab | 
 the y label of the plot  | 
absolute | 
 logical; use absolute values instead of deviations?  | 
Note that GOF is not limited to confirmatory factor analysis and
can apply to nearly any model being studied
where detection of influential observations is important.
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P. & Flora, D. B. (2015). faoutlier: An R Package for Detecting Influential Cases in Exploratory and Confirmatory Factor Analysis. Applied Psychological Measurement, 39, 573-574. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0146621615597894")}
Flora, D. B., LaBrish, C. & Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Psychology, 3, 1-21. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3389/fpsyg.2012.00055")}
gCD, LD, obs.resid,
robustMD, setCluster
## Not run: 
#run all GOF functions using multiple cores
setCluster()
#Exploratory
nfact <- 3
(GOFresult <- GOF(holzinger, nfact))
(GOFresult.outlier <- GOF(holzinger.outlier, nfact))
plot(GOFresult)
plot(GOFresult.outlier)
## include a progress bar
GOFresult <- GOF(holzinger, nfact, progress = TRUE)
#-------------------------------------------------------------------
#Confirmatory with sem
model <- sem::specifyModel()
  F1 -> Remndrs,    lam11
	  F1 -> SntComp,    lam21
	  F1 -> WrdMean,    lam31
	  F2 -> MissNum,    lam42
	  F2 -> MxdArit,    lam52
	  F2 -> OddWrds,    lam62
	  F3 -> Boots,      lam73
  F3 -> Gloves,     lam83
	  F3 -> Hatchts,    lam93
	  F1 <-> F1,   NA,     1
	  F2 <-> F2,   NA,     1
	  F3 <-> F3,   NA,     1
(GOFresult <- GOF(holzinger, model))
(GOFresult.outlier <- GOF(holzinger.outlier, model))
plot(GOFresult)
plot(GOFresult.outlier)
#-------------------------------------------------------------------
#Confirmatory with lavaan
model <- 'F1 =~  Remndrs + SntComp + WrdMean
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'
(GOFresult <- GOF(holzinger, model, orthogonal=TRUE))
(GOFresult.outlier <- GOF(holzinger.outlier, model, orthogonal=TRUE))
plot(GOFresult)
plot(GOFresult.outlier)
# categorical data with mirt
library(mirt)
data(LSAT7)
dat <- expand.table(LSAT7)
model <- mirt.model('F = 1-5')
result <- GOF(dat, model)
plot(result)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.