Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates estimates of the average, minimal, and maximal entries of a spillover.
1 | sot_avg_est(Sigma, A, ncores = 1, ...)
|
Sigma |
Either a covariance matrix or a list thereof. |
A |
Either a 3-dimensional array with A[,,h] being MA coefficient matrices of the same dimension as |
ncores |
Number of cores. Missing ncores or |
... |
Further arguments, especially |
The spillover tables introduced by Diebold and Yilmaz (2009) (see References) depend on the ordering of the model variables.
While sot_avg_exact
provides a fast algorithm for exact calculation of average, minimum, and maximum of the spillover table over all permutations,
there might be reasons to prefer to estimate these quantities using a limited number of permutations (mainly to save time when
N is large). This is exactly what sot_avg_est
does.
The typical application of the 'list' version of sot_avg_est
is a rolling windows approach when Sigma
and A
are lists representing the corresponding quantities at different points in time
(rolling windows).
The 'single' version returns a list containing the exact average, minimal, and maximal values for the spillover table. The 'list' version returns a list with three elements (Average, Minimum, Maximum) which themselves are lists of the corresponding tables.
Stefan Kloessner (S.Kloessner@mx.uni-saarland.de),
with contributions by Sven Wagner (sven.wagner@mx.uni-saarland.de)
[1] Diebold, F. X. and Yilmaz, K. (2009): Measuring financial asset return and volatitliy spillovers, with application to global equity markets, Economic Journal 199(534): 158-171.
[2] Kloessner, S. and Wagner, S. (2012): Exploring All VAR Orderings for Calculating Spillovers? Yes, We Can! - A Note on Diebold and Yilmaz (2009), Journal of Applied Econometrics 29(1): 172-179
fastSOM-package
, sot_avg_exact
1 2 3 4 5 6 7 8 9 | # generate randomly positive definite matrix Sigma of dimension N
N <- 10
Sigma <- crossprod(matrix(rnorm(N*N),nrow=N))
# generate randomly coefficient matrices
H <- 10
A <- array(rnorm(N*N*H),dim=c(N,N,H))
# calculate estimates of the average, minimal,
# and maximal entries within a spillover table
sot_avg_est(Sigma, A)
|
$Average
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 7.131997 8.897803 17.245368 10.397286 10.991637 5.843408 10.843590
[2,] 8.038402 11.500587 19.541735 10.237624 9.798683 5.059133 6.582334
[3,] 10.072653 6.955790 10.598900 8.275744 12.943754 8.533310 8.697913
[4,] 8.003082 8.850227 12.810166 14.357366 7.014036 5.956343 5.347114
[5,] 9.631501 11.191684 15.216506 16.205363 7.551046 5.895983 7.144176
[6,] 7.207944 6.174229 7.566137 13.371050 6.983226 7.627972 8.736131
[7,] 7.029431 9.302315 14.486940 16.099417 7.838716 6.049322 10.893869
[8,] 5.918039 5.308164 14.166931 16.184790 13.232499 9.287747 7.657417
[9,] 5.790895 7.271241 7.473196 15.811504 8.788704 7.101323 8.837881
[10,] 8.570422 7.244235 11.115416 12.885737 5.590094 4.664744 17.287179
[,8] [,9] [,10]
[1,] 8.299696 6.834690 13.514526
[2,] 12.156352 5.812677 11.272472
[3,] 13.075017 5.204096 15.642822
[4,] 15.141027 9.361280 13.159358
[5,] 9.442907 4.425776 13.295058
[6,] 16.892506 13.377070 12.063736
[7,] 9.686675 6.689223 11.924091
[8,] 15.951135 7.258661 5.034617
[9,] 16.544784 5.357407 17.023065
[10,] 6.909184 10.488408 15.244582
$Minimum
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.4673304 0.4151205 5.410451 2.0830415 0.16524263 0.11319808 0.5189424
[2,] 0.3592046 0.9911296 9.598143 1.3789064 0.24796586 0.09911266 0.3271984
[3,] 0.3852540 0.4955812 2.646801 0.9638923 0.22340811 0.19584446 0.2660236
[4,] 0.5307983 0.2705718 5.945582 2.0706377 0.21269170 0.25144132 0.3075747
[5,] 0.6781613 1.9627259 6.833386 3.7594013 0.32330013 0.20240132 0.5018526
[6,] 0.4946423 0.3260234 3.135094 1.4442521 0.20645680 0.15617738 0.3423146
[7,] 0.4018546 0.4620068 4.246922 2.9593389 0.08915397 0.15255695 0.5435998
[8,] 0.3380741 0.3380228 3.530194 1.6824511 0.23059693 0.24026242 0.2960987
[9,] 0.3235174 0.2422826 2.757036 1.9638615 0.23221277 0.24699103 0.2398075
[10,] 0.3967203 0.3837236 3.379292 1.9967195 0.18766869 0.10032525 0.7198117
[,8] [,9] [,10]
[1,] 0.1584963 0.51364327 0.5107980
[2,] 0.1415514 0.26369650 0.1704962
[3,] 0.1033629 0.08507321 0.3180113
[4,] 0.1643471 0.69397807 0.3991289
[5,] 0.1496938 0.85237172 0.4168935
[6,] 0.1146758 1.02570380 0.3767656
[7,] 0.1219063 0.39636624 0.1560601
[8,] 0.2488951 0.53758330 0.1276999
[9,] 0.1950756 0.53182377 0.3650258
[10,] 0.1704638 1.19712483 0.3431338
$Maximum
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 16.61668 27.23263 34.78118 27.06430 30.26329 21.75680 25.61691 26.58111
[2,] 17.06794 27.58838 31.55307 19.92698 24.49910 13.63015 15.81394 28.50312
[3,] 33.39184 23.12629 26.31031 27.00091 33.93253 25.01891 22.47147 32.37130
[4,] 17.10440 21.35314 17.97644 27.84256 22.08377 15.64404 12.51526 32.25882
[5,] 21.35428 25.05039 24.45188 29.25133 16.55753 13.25312 15.97567 22.01181
[6,] 22.69345 17.94661 16.38081 38.80468 32.60119 31.48382 20.72314 44.32670
[7,] 17.68831 20.64192 28.17732 32.63992 20.52400 18.97128 23.04478 21.33491
[8,] 14.57081 16.46649 30.64453 36.84082 33.83469 23.57101 20.05926 41.02052
[9,] 18.86371 20.03592 15.15944 38.55596 23.58705 21.17369 23.95842 46.80301
[10,] 20.02812 15.17771 20.31619 25.21074 16.98341 12.12677 37.59045 18.07039
[,9] [,10]
[1,] 18.78202 32.11117
[2,] 13.72232 23.90242
[3,] 25.04412 37.21760
[4,] 20.02471 28.86471
[5,] 16.12973 27.41948
[6,] 32.14363 32.49904
[7,] 17.47247 26.82632
[8,] 17.58107 18.26457
[9,] 17.37124 39.71934
[10,] 22.03250 38.71328
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.