Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/SOT_avg_exact.r
Calculates the exact values of the average, the minimum, and the maximum entries of a spillover tables based on different permutations.
1 | sot_avg_exact(Sigma, A, ncores = 1)
|
Sigma |
Either a covariance matrix or a list thereof. |
A |
Either a 3-dimensional array with A[,,h] being MA coefficient matrices of the same dimension as |
ncores |
Number of cores, only relevant for 'list' version. In this case, missing ncores or |
The spillover tables introduced by Diebold and Yilmaz (2009) (see References) depend on the ordering of the model variables.
While sot_avg_est
provides an algorithm to estimate average, minimal, and maximal values of the spillover table over all permutations,
sot_avg_est
calculates these quantities exactly. Notice, however, that for large dimensions N, this might be quite
time- as well as memory-consuming.
The typical application of the 'list' version of sot_avg_exact
is a rolling windows approach when Sigma
and A
are lists representing the corresponding quantities at different points in time
(rolling windows).
The 'single' version returns a list containing the exact average, minimal, and maximal values for the spillover table. The 'list' version returns a list with three elements (Average, Minimum, Maximum) which themselves are lists of the corresponding tables.
Stefan Kloessner (S.Kloessner@mx.uni-saarland.de),
with contributions by Sven Wagner (sven.wagner@mx.uni-saarland.de)
[1] Diebold, F. X. and Yilmaz, K. (2009): Measuring financial asset return and volatitliy spillovers, with application to global equity markets, Economic Journal 199(534): 158-171.
[2] Kloessner, S. and Wagner, S. (2012): Exploring All VAR Orderings for Calculating Spillovers? Yes, We Can! - A Note on Diebold and Yilmaz (2009), Journal of Applied Econometrics 29(1): 172-179
1 2 3 4 5 6 7 8 9 | # generate randomly positive definite matrix Sigma of dimension N
N <- 10
Sigma <- crossprod(matrix(rnorm(N*N),nrow=N))
# generate randomly coefficient matrices
H <- 10
A <- array(rnorm(N*N*H),dim=c(N,N,H))
# calculate the exact average, minimal,
# and maximal entries within a spillover table
sot_avg_exact(Sigma, A)
|
$Average
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 14.825364 7.867626 8.506537 5.496627 8.795434 14.844105 7.051553
[2,] 10.252705 8.317974 5.757847 4.201129 9.791842 14.880491 11.023404
[3,] 18.511416 7.711029 8.191951 3.500014 4.355770 9.306053 5.008147
[4,] 11.038359 13.276920 5.693677 4.095960 5.474803 10.688028 17.229365
[5,] 8.873401 11.465916 10.209360 5.279179 7.172354 14.229914 10.430407
[6,] 8.728716 11.518819 6.436628 4.918960 4.785127 16.454067 10.071042
[7,] 15.005952 6.758312 8.801740 6.798204 8.595557 13.167604 5.565243
[8,] 17.915228 13.434036 4.208751 4.055034 6.492516 9.309822 7.741718
[9,] 23.204723 6.042415 6.002176 5.157739 8.896855 5.534564 4.531013
[10,] 15.100626 11.322085 6.177290 5.578415 12.419195 4.686658 8.489457
[,8] [,9] [,10]
[1,] 5.065729 6.822080 20.724945
[2,] 8.018874 12.483791 15.271944
[3,] 14.662245 14.977014 13.776361
[4,] 12.305974 9.120816 11.076098
[5,] 4.745754 11.690679 15.903037
[6,] 8.344373 10.514000 18.228270
[7,] 3.784470 10.603212 20.919704
[8,] 9.599946 13.335855 13.907095
[9,] 15.532331 16.674549 8.423634
[10,] 7.928878 16.764054 11.533342
$Minimum
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.3832640 1.752439 0.7638845 0.14548621 0.4288127 0.6179213 1.0310027
[2,] 0.5051805 1.386896 0.3905789 0.06852862 0.4843531 0.8832763 2.1490451
[3,] 2.4992070 1.774800 0.5961668 0.09822310 0.2542988 0.6825992 0.5553754
[4,] 0.8141716 2.079408 0.5269309 0.10925737 0.3126513 0.7503779 4.7887562
[5,] 1.0458660 3.196852 0.7554046 0.08823491 0.4418585 1.1866210 1.5178725
[6,] 0.8130034 2.149076 0.6012360 0.15235716 0.1413642 1.3043141 1.8850852
[7,] 1.1120987 1.950884 0.7867752 0.13910343 0.5940523 0.7771537 1.6898287
[8,] 2.0782105 2.606355 0.1200207 0.01943590 0.4440821 1.0301609 1.2728559
[9,] 2.2657255 1.799415 0.4194323 0.04866972 0.7296359 0.4833795 0.8553796
[10,] 1.3660604 2.830868 0.2480203 0.03196136 0.5383637 0.2758587 1.3292769
[,8] [,9] [,10]
[1,] 1.467688 0.6747014 2.3025523
[2,] 1.473614 2.8498445 1.1144064
[3,] 5.722879 3.5541503 1.2701110
[4,] 4.222923 1.5652493 0.5286116
[5,] 1.478762 3.0295387 0.6735909
[6,] 2.033208 2.2567823 1.3108098
[7,] 1.082462 1.9075987 1.9570582
[8,] 2.866388 3.9952087 0.9856814
[9,] 3.830232 2.4786829 0.2623241
[10,] 1.932011 4.8415358 0.7170907
$Maximum
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 26.94833 15.90021 19.32062 13.64599 19.72601 34.92008 20.01436 12.413514
[2,] 27.03984 18.55760 13.80730 14.69616 24.55488 29.48349 24.63670 20.055334
[3,] 40.14332 14.70910 26.33158 20.29138 16.74133 19.36675 15.23218 29.746039
[4,] 23.81347 32.37727 14.91286 13.93277 19.17334 19.69181 35.14968 25.773646
[5,] 17.03462 21.21085 21.43457 15.24655 18.24748 28.37173 24.20324 10.324961
[6,] 24.37414 23.64715 13.58222 18.68180 15.31756 36.43361 21.89946 18.649163
[7,] 33.32940 15.71694 23.93008 23.07494 22.32932 29.96544 14.59449 9.344535
[8,] 34.00241 22.03938 11.44272 10.20226 14.54621 20.56627 17.49354 18.140716
[9,] 47.60151 14.71509 22.58622 16.55474 27.92030 16.96014 20.15699 38.165197
[10,] 30.61271 22.59309 15.03728 14.85619 24.23513 13.12054 23.55046 18.428536
[,9] [,10]
[1,] 16.31772 39.26994
[2,] 28.83195 30.67938
[3,] 31.27941 29.37634
[4,] 23.67388 21.19086
[5,] 21.36771 31.84873
[6,] 24.33401 40.92046
[7,] 20.77421 45.59178
[8,] 22.76611 29.80152
[9,] 41.45571 21.96433
[10,] 29.15940 26.26112
$Average_p
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 8.7922883 4.245092 4.311358 3.082816 5.391202 8.404842 4.686997 1.5191761
[2,] 4.0871519 4.489136 3.778046 2.263271 2.032197 8.261705 7.464712 2.5926703
[3,] 0.1045237 2.846297 2.513861 3.047891 2.030563 7.048063 2.824293 1.4241466
[4,] 8.3633624 3.046526 2.573445 2.157266 3.417913 7.301176 1.715980 8.9140157
[5,] 6.4070426 3.003690 4.652230 1.819492 3.872013 2.712221 4.893384 1.3487457
[6,] 6.1408930 7.082711 4.432031 2.841314 2.092216 9.935038 3.338673 5.8316282
[7,] 8.2102816 6.133782 8.270157 2.947338 1.513925 3.616154 5.263166 2.5430052
[8,] 7.1043603 9.938383 2.346330 2.322889 2.361956 4.525325 5.833334 2.9463797
[9,] 2.7567468 2.111375 0.691758 3.070014 5.466721 3.524945 2.139830 1.0492752
[10,] 5.6989268 7.775842 3.023033 1.451098 3.087900 2.476695 5.407140 0.8004471
[,9] [,10]
[1,] 3.347118 9.880353
[2,] 8.473732 8.773767
[3,] 12.883956 1.239925
[4,] 2.604188 3.923922
[5,] 4.793351 13.525707
[6,] 2.301680 10.141931
[7,] 1.222949 11.700386
[8,] 7.753030 7.707790
[9,] 13.627709 1.168438
[10,] 10.959474 7.781634
$Minimum_p
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.7098328 0.9522517 0.40018847 0.041829897 0.31169606 0.38021033
[2,] 0.2605833 0.5433848 0.28397814 0.024744191 0.13921307 0.65199238
[3,] 0.0000000 0.2192629 0.02564810 0.068148234 0.00000000 0.34248913
[4,] 0.6306196 0.3977004 0.07005170 0.038498636 0.11960490 0.54124079
[5,] 0.6373477 0.4094019 0.38356898 0.014561273 0.07750277 0.19455787
[6,] 0.5957935 0.9688491 0.07757327 0.137967226 0.02366347 0.56412371
[7,] 0.3729528 0.8039676 0.76024443 0.003511172 0.10913004 0.01594846
[8,] 0.6664304 2.0657027 0.05069405 0.014652589 0.17722389 0.63263376
[9,] 0.2345567 0.1652160 0.06007597 0.010051670 0.43146788 0.25547720
[10,] 0.4549219 2.1328581 0.08141863 0.017098062 0.07066559 0.06783587
[,7] [,8] [,9] [,10]
[1,] 0.59890432 0.13380886 0.2121991 1.14005676
[2,] 1.59208185 0.88087224 1.8546787 0.71530184
[3,] 0.06772678 0.10513841 1.3245258 0.00000000
[4,] 0.09378978 2.34600987 0.3530244 0.12495305
[5,] 0.30813813 0.04947843 0.4714376 0.51845163
[6,] 0.24121354 0.83380515 0.3281914 0.91598793
[7,] 1.33474587 0.31457582 0.3850706 0.42149418
[8,] 1.06870256 0.52162466 1.7887108 0.76764465
[9,] 0.06281694 0.07326361 1.6593466 0.06088944
[10,] 0.13648384 0.04059785 2.8878158 0.40924038
$Maximum_p
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 18.724741 10.532164 10.013656 7.858014 11.700335 21.020824 11.052182
[2,] 8.876022 12.009091 11.237169 9.227964 8.008279 16.383966 19.708536
[3,] 1.863197 8.267499 6.605494 19.929003 7.671046 17.094897 14.094127
[4,] 21.382380 7.182245 9.580654 7.174316 12.141066 13.685163 4.425069
[5,] 15.378128 11.225335 14.428813 4.992795 12.792449 5.922839 14.003433
[6,] 20.384345 14.296769 10.719407 11.583574 8.592869 20.902581 8.984571
[7,] 21.309815 15.695405 21.750760 10.676021 13.514881 11.377355 14.552327
[8,] 13.924609 17.284664 6.215452 8.081780 5.763715 10.299151 12.512263
[9,] 6.584970 5.996059 2.288429 13.729618 11.670969 9.000503 16.660719
[10,] 14.167979 17.553033 9.393068 7.028120 6.785565 9.218819 18.116415
[,8] [,9] [,10]
[1,] 4.239933 9.481666 18.604269
[2,] 5.105580 23.514035 17.786939
[3,] 4.704754 29.929735 7.088065
[4,] 20.492541 6.853501 10.214085
[5,] 3.953239 12.055552 28.078627
[6,] 14.578135 6.698264 19.754360
[7,] 8.265094 3.656005 27.837586
[8,] 7.156997 16.541506 15.454635
[9,] 3.033824 36.197090 7.304693
[10,] 3.313782 24.664398 21.256670
$Average_n
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 6.033075 3.6225332 4.1951786 2.4138109 3.404233 6.439263 2.3645559
[2,] 6.165553 3.8288372 1.9798007 1.9378579 7.759645 6.618787 3.5586921
[3,] 18.406892 4.8647319 5.6780902 0.4521226 2.325206 2.257991 2.1838544
[4,] 2.674997 10.2303932 3.1202319 1.9386948 2.056889 3.386851 15.5133851
[5,] 2.466358 8.4622258 5.5571301 3.4596866 3.300340 11.517693 5.5370231
[6,] 2.587823 4.4361078 2.0045974 2.0776461 2.692910 6.519028 6.7323685
[7,] 6.795670 0.6245303 0.5315834 3.8508656 7.081633 9.551450 0.3020772
[8,] 10.810867 3.4956528 1.8624206 1.7321443 4.130560 4.784497 1.9083831
[9,] 20.447976 3.9310407 5.3104180 2.0877248 3.430134 2.009619 2.3911824
[10,] 9.401700 3.5462424 3.1542567 4.1273164 9.331295 2.209963 3.0823171
[,8] [,9] [,10]
[1,] 3.546553 3.474963 10.844592
[2,] 5.426204 4.010059 6.498177
[3,] 13.238099 2.093059 12.536436
[4,] 3.391958 6.516628 7.152177
[5,] 3.397009 6.897328 2.377330
[6,] 2.512745 8.212320 8.086339
[7,] 1.241465 9.380264 9.219319
[8,] 6.653567 5.582825 6.199306
[9,] 14.483056 3.046840 7.255196
[10,] 7.128431 5.804580 3.751708
$Minimum_n
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.60528496 7.168007e-01 0.363696018 0.088953005 0.03523944 0.21109897
[2,] 0.14961448 6.986486e-01 0.095703206 0.043784432 0.30276737 0.22393701
[3,] 2.45576104 7.770768e-01 0.330835369 0.005342222 0.06297877 0.02034394
[4,] 0.02099932 1.486352e+00 0.137969729 0.010963306 0.16890693 0.05793159
[5,] 0.19400323 1.910818e+00 0.073999281 0.014549699 0.08538094 0.90016493
[6,] 0.21720985 6.068807e-01 0.349825634 0.013775652 0.11770071 0.34649305
[7,] 0.39117570 8.581811e-05 0.004075093 0.113570814 0.45024375 0.67102238
[8,] 1.41178005 5.406528e-01 0.069326634 0.004783311 0.16734050 0.39752711
[9,] 1.84344070 1.081692e+00 0.210791581 0.014557127 0.07634666 0.15018828
[10,] 0.72955906 6.506966e-01 0.079408734 0.007938412 0.18720884 0.16838477
[,7] [,8] [,9] [,10]
[1,] 0.1805289 1.33265570 0.4625024 0.9597927
[2,] 0.4025595 0.59274147 0.6950773 0.3991046
[3,] 0.1358969 4.45860788 0.3325959 0.5187230
[4,] 4.3033334 0.99833890 1.0225736 0.1881861
[5,] 0.9858504 1.36815370 2.3903503 0.1380466
[6,] 1.2138807 1.05466797 1.6662168 0.3049281
[7,] 0.0000000 0.03747624 1.4558050 0.0000000
[8,] 0.1061536 2.09295613 1.4178510 0.2006851
[9,] 0.3470208 3.71115545 0.5818651 0.1940688
[10,] 0.8823256 1.47124450 1.7034026 0.1855961
$Maximum_n
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 14.447403 7.950353 11.964072 6.448267 8.764984 14.205530 11.345555
[2,] 22.165872 7.403333 8.862350 7.847369 19.579119 14.616821 7.719528
[3,] 40.143324 13.196407 25.928368 2.260993 16.173936 9.603122 8.396840
[4,] 7.659577 26.661025 9.252189 7.653696 7.046306 9.006252 30.930102
[5,] 10.218458 17.573650 13.867620 12.922173 8.496973 23.798952 16.605115
[6,] 6.692435 14.616401 6.036888 7.529699 11.659866 16.169157 17.359737
[7,] 16.996655 3.680182 2.314989 19.354482 15.884901 24.164002 3.787263
[8,] 21.413018 7.855111 7.795027 5.902281 10.644440 11.930092 6.516849
[9,] 43.418275 11.961335 21.648079 7.514391 23.395106 13.541142 5.943951
[10,] 27.991454 7.034686 8.795488 11.524046 18.635442 6.117979 6.944079
[,8] [,9] [,10]
[1,] 8.643531 7.340169 22.134447
[2,] 15.660579 9.269914 14.515158
[3,] 28.827897 5.449738 28.527170
[4,] 5.868927 20.030763 16.126866
[5,] 8.190948 13.078935 6.070533
[6,] 6.288200 19.529832 24.723645
[7,] 5.983028 19.512284 20.786528
[8,] 12.572576 12.379640 16.956830
[9,] 35.728993 6.345866 20.019686
[10,] 17.394703 12.377402 9.442533
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.