Bayesian Optimisation

knitr::opts_chunk$set(echo = TRUE, eval = FALSE)

Intro

The fastai library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at fast.ai, and includes "out of the box" support for vision, text, tabular, and collab (collaborative filtering) models.

Bayesian Optimisation

The dataset can be downloaded from Kaggle:

library(rBayesianOptimization)
library(magrittr)
library(fastai)

df = data.table::fread('train.csv')
df$ID_code <- NULL
df$target <- as.character(df$target)

procs = list(FillMissing(),Categorify(),Normalize())

pct_80 = round(nrow(df) * .8)

dep_var = 'target'
cont_names = setdiff(names(df), dep_var)

dls = TabularDataTable(df, procs, NULL, cont_names,
                       y_names = dep_var, splits = list(c(1:pct_80),c(c(pct_80+1):nrow(df))
                                                        )) %>%
  dataloaders(bs = 100)

fastai_fit = function(layer_1, layer_2, layer_3, lr, wd, emb_p) {
  model <- dls %>% tabular_learner(layers = c(layer_1, layer_2, layer_3),
                                  wd = wd, config = tabular_config(embed_p = emb_p, 
                                                                   use_bn = TRUE),
                                  metrics=list(RocAucBinary(),accuracy()),
                                  cbs = list(EarlyStoppingCallback(monitor='valid_loss', 
                                                                   patience = 2))
                                  )

  result_ <- model %>% fit_one_cycle(10,lr)

  score_ <- list(Score = unlist(tail(result_$roc_auc_score,1)),
                 Pred = 0)
  rm(model)

  return(score_)
}

search_bound_fastai <- list(layer_1 = c(20,200), layer_2 = c(20,200),
                            layer_3 = c(20,200),
                            lr = c(0, 0.1), wd = c(0, 0.1),
                            emb_p = c(0,1)
                           )
set.seed(123)
search_grid_fastai <- data.frame(layer_1 = runif(30, 20, 200),
                                layer_2 = runif(30, 20, 200),
                                layer_3 = runif(30, 20, 200),
                                lr = runif(30, 0, 0.1),
                                wd = runif(30, 0, 0.1),
                                emb_p = runif(30, 0, 1)
                                )
head(search_grid_fastai)

set.seed(123)
bayes_fastai <- BayesianOptimization(FUN = fastai_fit, bounds = search_bound_fastai,
                                    init_points = 2, init_grid_dt = search_grid_fastai,
                                    n_iter = 5, acq = "ucb")


bayes_fastai$Best_Par


Try the fastai package in your browser

Any scripts or data that you put into this service are public.

fastai documentation built on March 21, 2022, 9:07 a.m.