Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = "100%",
fig.width = 8,
fig.height = 4
)
# run a simple analysis
ctable <- function(df, predictor = "pet") {
a <- paste("y ~", predictor) %>%
formula() %>%
lm(df)
contrast_table <- kable(contrasts(df[[predictor]]), format = "html") %>%
kable_styling()
analysis_table <- kable(broom::tidy(a), format = "html") %>%
kable_styling()
paste(
"<table class='ctable table'>",
"<thead><tr><th>Contrasts</th><th>lm(y ~ pet, df)</th></thead>",
"<tbody><tr><td>",
contrast_table,
"</td><td>",
analysis_table,
"</td></tr></tbody></table>",
sep = "\n"
)
}
options(digits = 3)
set.seed(8675309)
library(faux)
library(kableExtra)
## -----------------------------------------------------------------------------
df <- sim_design(between = list(pet = c("cat", "dog", "ferret")),
n = c(50), mu = c(2, 4, 9), empirical = TRUE)
## -----------------------------------------------------------------------------
df$pet <- contr_code_treatment(df$pet)
## -----------------------------------------------------------------------------
df$pet <- contr_code_treatment(df$pet, base = "dog")
## -----------------------------------------------------------------------------
df$pet <- contr_code_treatment(df$pet, base = 3)
## -----------------------------------------------------------------------------
df$pet <- contr_code_anova(df$pet)
## -----------------------------------------------------------------------------
df$pet <- contr_code_anova(df$pet, base = "dog")
## -----------------------------------------------------------------------------
df$pet <- contr_code_anova(df$pet, base = 3)
## -----------------------------------------------------------------------------
df$pet <- contr_code_sum(df$pet)
## -----------------------------------------------------------------------------
df$pet <- contr_code_sum(df$pet, omit = "dog")
## -----------------------------------------------------------------------------
df$pet <- contr_code_sum(df$pet, omit = 1)
## -----------------------------------------------------------------------------
df$pet <- contr_code_difference(df$pet)
## -----------------------------------------------------------------------------
df$pet <- contr_code_difference(df$pet, levels = c("ferret", "cat", "dog"))
## ---- include = FALSE---------------------------------------------------------
# get levels back to normal
df$pet <- contr_code_difference(df$pet, levels = c("cat", "dog", "ferret"))
## -----------------------------------------------------------------------------
df$pet <- contr_code_helmert(df$pet)
## -----------------------------------------------------------------------------
df$pet <- contr_code_helmert(df$pet, levels = c("ferret", "dog", "cat"))
## -----------------------------------------------------------------------------
df <- sim_design(list(time = 1:5),
mu = 1:5 * 0.25 + (1:5 - 3)^2 * 0.5,
sd = 5, long = TRUE)
## -----------------------------------------------------------------------------
df$time <- contr_code_poly(df$time)
## -----------------------------------------------------------------------------
df <- sim_design(list(time = 1:5),
mu = 1:5 * 0.25 + (1:5 - 3)^2 * 0.5,
sd = 5, long = TRUE, plot = FALSE) %>%
add_contrast("time", "poly")
## ---- results='hide'----------------------------------------------------------
# test only the linear and quadratic contrasts
lm(y ~ `time^1` + `time^2`, df) %>% broom::tidy()
## ---- echo = FALSE------------------------------------------------------------
lm(y ~ `time^1` + `time^2`, df) %>%
broom::tidy() %>%
knitr::kable() %>%
kable_styling()
## -----------------------------------------------------------------------------
btwn <- list(condition = c("control", "experimental"))
df <- sim_design(between = btwn, n = 1, plot = FALSE) %>%
add_contrast("condition", "treatment", colnames = "cond.tr") %>%
add_contrast("condition", "anova", colnames = "cond.aov") %>%
add_contrast("condition", "difference", colnames = "cond.dif") %>%
add_contrast("condition", "sum", colnames = "cond.sum") %>%
add_contrast("condition", "helmert", colnames = "cond.hmt") %>%
add_contrast("condition", "poly", colnames = "cond.poly")
## -----------------------------------------------------------------------------
btwn <- list(pet = c("cat", "dog", "ferret"))
df <- sim_design(between = btwn, n = 1, plot = FALSE) %>%
add_contrast("pet", "treatment") %>%
add_contrast("pet", "anova") %>%
add_contrast("pet", "sum") %>%
add_contrast("pet", "difference") %>%
add_contrast("pet", "helmert") %>%
add_contrast("pet", "poly")
## -----------------------------------------------------------------------------
mu <- c(0, 4, 6, 10)
df <- sim_design(between = list(time = c("am", "pm"),
pet = c("cat", "dog")),
n = c(50, 60, 70, 80), mu = mu, empirical = TRUE)
## ---- echo = FALSE------------------------------------------------------------
Yca = mu[[1]]
Yda = mu[[2]]
Ycp = mu[[3]]
Ydp = mu[[4]]
Yc. = ((Yca + Ycp)/2) %>% round(2)
Yd. = ((Yda + Ydp)/2) %>% round(2)
Y.a = ((Yca + Yda)/2) %>% round(2)
Y.p = ((Ycp + Ydp)/2) %>% round(2)
Y.. = ((Yca + Yda + Ycp + Ydp)/4) %>% round(2)
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "treatment") %>%
add_contrast("time", "treatment") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "anova") %>%
add_contrast("time", "anova") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "sum") %>%
add_contrast("time", "sum") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "difference") %>%
add_contrast("time", "difference") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "helmert") %>%
add_contrast("time", "helmert") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
mu <- c(0, 5, 7, 6, 2, 1)
df <- sim_design(between = list(time = c("am", "pm"),
pet = c("cat", "dog", "ferret")),
n = c(50, 60, 70, 80, 90, 100), mu = mu, empirical = TRUE)
## ---- echo = FALSE------------------------------------------------------------
Yca = mu[[1]]
Yda = mu[[2]]
Yfa = mu[[3]]
Ycp = mu[[4]]
Ydp = mu[[5]]
Yfp = mu[[6]]
Yc. = ((Yca + Ycp)/2) %>% round(2)
Yd. = ((Yda + Ydp)/2) %>% round(2)
Yf. = ((Yfa + Yfp)/2) %>% round(2)
Y.a = ((Yca + Yda + Yfa)/3) %>% round(2)
Y.p = ((Ycp + Ydp + Yfp)/3) %>% round(2)
Y.. = ((Yca + Yda + Yfa + Ycp + Ydp + Yfp)/6) %>% round(2)
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "treatment") %>%
add_contrast("time", "treatment") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "anova") %>%
add_contrast("time", "anova") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "sum") %>%
add_contrast("time", "sum") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "difference") %>%
add_contrast("time", "difference") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
## -----------------------------------------------------------------------------
df %>%
add_contrast("pet", "helmert") %>%
add_contrast("time", "helmert") %>%
lm(y ~ pet * time, .) %>%
broom::tidy() %>% kable() %>% kable_styling()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.