R/SiZer.R

Defines functions SiCon SiZer

Documented in SiCon SiZer

SiZer <- function(x, bw, gridsize, scaleData=FALSE, signifLevel=0.05,  plotSiZer=TRUE, logbw=TRUE,  xlim, xlab, addLegend=TRUE, posLegend="bottomright") 
{ 
  if (!is.vector(x))
    stop("SiZer is currently only available for 1-dimensional data")

  if (missing(xlab)) {xlab <- deparse(substitute(x)); xlab[is.null(xlab)] <- "" }
  x <- as.matrix(x)
  tau <- 5
 
  d <- 1
  n <- length(x)

  if (scaleData)
    for (i in 1:d)
      x[,i] <- (x[,i]-min(x[,i]))/(max(x[,i]) - min(x[,i]))
  
  if (missing(gridsize)) gridsize <- c(401,151)
  if (length(gridsize)==1) gridsize <- rep(gridsize, 2)
  
  gs <- gridsize[1]
  
  ## Set some defaults
  if (missing(bw))
  {
     bw.range  <- dfltBWrange(x,tau)
     bw <- matrix(unlist(bw.range), nrow=2, byrow=FALSE)
  }
  else
     bw <- matrix(bw, ncol=1, nrow=2)
    
  if (missing(xlim))
  {
    h.low <- bw[1,]
    h.upp <- bw[2,]
    hmix.prop <- 1/4
    h.init <- h.low^(hmix.prop)*h.upp^(1-hmix.prop) ##sqrt(h.low*h.upp)
    
    xlim <- c(min(x)- h.init,max(x)+ h.init)
  }  

    
  dfltCounts.out  <- dfltCounts(x,gridsize=gs, apply(bw, 2, max))
  range.x <-dfltCounts.out$range.x
  gcounts <- dfltCounts.out$counts
  x.SiZer <- seq(range.x[[1]][1], range.x[[1]][2], length=gs) 
  bw <- seq(log(bw[1,1]), log(bw[2,1]), length=gridsize[2])
  SiZer.map <- matrix(0, ncol=length(bw), nrow=length(x.SiZer))
    
  i <- 0
  for (logh in bw) 
  {
    h <- exp(logh)
    i <- i + 1

    est.dens <- drvkde(gcounts,drv=0,bandwidth=h, binned=TRUE, range.x=range.x, se=FALSE)
    est.dens$est[est.dens$est<0] <- 0
    ESS <- n*est.dens$est*prod(h)*(sqrt(2*pi)^d)
    sig.ESS <- ESS >= 5
    
    SiZer.col <- rep(0, length(ESS))
    SiZer.col[sig.ESS] <- 1

    sig.deriv <- SignifFeatureRegion(n,d,gcounts,gridsize=gs, est.dens, h,signifLevel, range.x, grad=TRUE, curv=FALSE)
    sig.grad <- sig.deriv$grad
    est.grad <- drvkde(gcounts, drv=1, bandwidth=h, binned=TRUE, range.x=range.x, se=FALSE)$est
    SiZer.col[sig.ESS & sig.grad & est.grad >0] <- 2 
    SiZer.col[sig.ESS & sig.grad & est.grad <0] <- 3
    SiZer.map[,i] <- SiZer.col
  }

  ## Gradient SiZer map colours
  ## 0 = grey   = sparse data     
  ## 1 = purple = zero grad
  ## 2 = blue   = +ve grad
  ## 3 = red    = -ve grad

  col <- c("grey", "purple", "blue", "red")
  col <- c("#9E9E9E", "#CD0BBC", "#2297E6", "#DF536B")
  if (logbw)
    image(x.SiZer, bw, SiZer.map, breaks=c(-1,0,1,2,3), col=col, ylab="log(bandwidth)", xlab=xlab, xlim=xlim)
  else
    image(x.SiZer, exp(bw), SiZer.map, breaks=c(-1,0,1,2,3), col=col, ylab="bandwidth", xlab=xlab, xlim=xlim)
   
  if (addLegend)
    legend(posLegend, legend=c("sparse data", "zero grad", "+ve grad", "-ve grad"), fill=col, bty="n")
  feat <- list(x=x, x.grid=x.SiZer, bw=exp(bw), SiZer=SiZer.map)
  
  invisible(feat)
}

SiCon <- function(x, bw, gridsize, scaleData=FALSE, signifLevel=0.05,  plotSiCon=TRUE, logbw=TRUE,  xlim, xlab, addLegend=TRUE, posLegend="bottomright") 
{
  if (!is.vector(x))
    stop("SiCon is currently only available for 1-dimensional data")
  if (missing(xlab)) {xlab <- deparse(substitute(x)); xlab[is.null(xlab)] <- "" }
  x <- as.matrix(x)
  tau <- 5
 
  d <- 1
  n <- length(x)

  if (scaleData)
    for (i in 1:d)
      x[,i] <- (x[,i]-min(x[,i]))/(max(x[,i]) - min(x[,i]))
  
  if (missing(gridsize)) gridsize <- c(401,151)
  if (length(gridsize)==1) gridsize <- rep(gridsize, 2)
  
  gs <- gridsize[1]
  
  ## Set some defaults
  if (missing(bw))
  {
     bw.range  <- dfltBWrange(x,tau)
     bw <- matrix(unlist(bw.range), nrow=2, byrow=FALSE)
  }
  else
     bw <- matrix(bw, ncol=1, nrow=2)
    
  if (missing(xlim))
  {
    h.low <- bw[1,]
    h.upp <- bw[2,]
    hmix.prop <- 1/4
    h.init <- h.low^(hmix.prop)*h.upp^(1-hmix.prop) ##sqrt(h.low*h.upp)
    
    xlim <- c(min(x)- h.init,max(x)+ h.init)
  }  

  dfltCounts.out  <- dfltCounts(x,gridsize=gs, apply(bw, 2, max))
  range.x <-dfltCounts.out$range.x
  gcounts <- dfltCounts.out$counts
  x.SiCon <- seq(range.x[[1]][1], range.x[[1]][2], length=gs) 
  bw <- seq(log(bw[1,1]), log(bw[2,1]), length=gridsize[2])
  SiCon.map <- matrix(0, ncol=length(bw), nrow=length(x.SiCon))
    
  i <- 0
  for (logh in bw) 
  {
    h <- exp(logh)
    i <- i + 1

    est.dens <- drvkde(gcounts,drv=0,bandwidth=h, binned=TRUE, range.x=range.x, se=FALSE)
    est.dens$est[est.dens$est<0] <- 0
    ESS <- n*est.dens$est*prod(h)*(sqrt(2*pi)^d)
    sig.ESS <- ESS >= 5
    
    SiCon.col <- rep(0, length(ESS))
    SiCon.col[sig.ESS] <- 1

    sig.deriv <- SignifFeatureRegion(n,d,gcounts,gridsize=gs, est.dens, h, signifLevel, range.x, grad=FALSE, curv=TRUE, neg.curv.only=FALSE)
    sig.curv <- sig.deriv$curv
    est.curv <- drvkde(gcounts, drv=2, bandwidth=h, binned=TRUE, range.x=range.x, se=FALSE)$est
    SiCon.col[sig.ESS & sig.curv & est.curv >0] <- 2 
    SiCon.col[sig.ESS & sig.curv & est.curv <0] <- 3
    SiCon.map[,i] <- SiCon.col
  }

  ## SiCon map colours
  ## 0 = grey   = sparse data     
  ## 1 = green = zero grad
  ## 2 = orange   = +ve grad
  ## 3 = cyan    = -ve grad

  ##col <- c("grey", "green", "orange", "cyan")
  col <- c("#9E9E9E", "#61D04F", "#F5C710", "#28E2E5")
  
  if (logbw)
    image(x.SiCon, bw, SiCon.map, breaks=c(-1,0,1,2,3), col=col, ylab="log(bandwidth)", xlab=xlab, xlim=xlim)
  else
    image(x.SiCon, exp(bw), SiCon.map, breaks=c(-1,0,1,2,3), col=col, ylab="bandwidth", xlab=xlab, xlim=xlim)
   
  if (addLegend)
    legend(posLegend, legend=c("sparse data", "zero curv", "+ve curv (convex)", "-ve curv (concave)"), fill=col, bty="n")
  feat <- list(x=x, x.grid=x.SiCon, bw=exp(bw), SiCon=SiCon.map)
  
  invisible(feat)
}

  

Try the feature package in your browser

Any scripts or data that you put into this service are public.

feature documentation built on Feb. 10, 2021, 9:06 a.m.