Nothing
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
#
#
#
options( echo=FALSE)
test.for.zero.flag<-1
############ various tests of GCV and REML
set.seed(133)
x0<- matrix( runif( 10*2), 10,2)*2
x<- rbind( x0,x0, x0[3:7,])
y<- rnorm( nrow( x))*.05 + x[,1]**2 + x[,2]**2
weights<- 8 + runif( nrow( x))
# x0 are the unique values.
out.new<- Krig( x,y, weights=weights, cov.function=Exp.cov)
n<- length(y)
n0<- nrow( x0)
NK <- nrow( x0)
NP<- NK + 3
K<- Exp.cov( x0, x0)
H<- matrix(0, NP,NP)
H[(1:NK)+3 , (1:NK)+3]<- K
X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, x0) )
X0<- cbind( fields.mkpoly( x0, 2), Exp.cov( x0, x0) )
Alam <- X%*%solve(
t(X)%*%diag(weights)%*%X + out.new$lambda*H
)%*% t(X)%*%diag(weights)
# predict sanity check using replicates
set.seed( 123)
ynew<- rnorm(n)
test.for.zero( Alam%*%ynew, predict( out.new, y=ynew), tag=" predict sanity check",tol=3e-8)
# predict using unique obs
ynew<- rnorm(nrow(x0))
Alam0<- X0%*%solve(
t(X0)%*%diag(out.new$weightsM)%*%X0 + out.new$lambda*H
)%*% t(X0)%*%diag(out.new$weightsM)
# Alam0 is the A matrix
test.for.zero( Alam0%*%ynew, predict( out.new,x=x0, yM=ynew), tag="predict using direct linear algebra" )
#
test<- Krig.fgcv( lam=out.new$lambda, out.new)
y0<- out.new$yM
n0<- length(y0)
# compare to
#test2<- (1/n0)*sum( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) / (1- sum(diag( Alam0))/n0)**2
NUM<- mean( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) + out.new$pure.ss/( n -n0 )
DEN<- (1- sum(diag( Alam0))/n0)
test2<- NUM/ DEN^2
test.for.zero( test,test2, tag="GCV" )
test<- Krig.fgcv.one( lam=out.new$lambda, out.new)
N<- length(y)
test2<- (1/N)*sum( (y - c(Alam%*% y))**2 *weights) /
(1- sum(diag( Alam))/N)**2
test.for.zero( test,test2, tag="GCV one" )
test<- Krig.fgcv.model( lam=out.new$lambda, out.new)
y0<- out.new$yM
n0<- length(y0)
# compare to
test2<- (1/n0)*sum( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) / (1- sum(diag( Alam0))/n0)**2 + out.new$tauHat.pure.error**2
test.for.zero( test,test2,tag="GCV model")
####### tests with higher level gcv.Krig
data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
Tps( x,y)-> out
KrigFindLambda( out, tol=1e-10)-> out2
test.for.zero(out$lambda.est[1,-6],
out2$lambda.est[1,-6],tol=5e-4, tag="Tps/gcv for ozone2")
# try with "new" data (linear transform should give identical
# results for GCV eff df
KrigFindLambda( out, y=(11*out$y + 5), tol=1e-10 )-> out3
test.for.zero(out2$lambda.est[1,2],
out3$lambda.est[1,2],tol=1e-6, tag="Tps/gcv for ozone2 new data")
#cat("done with GCV case", fill=TRUE)
cat("done with GCV and REML tests", fill=TRUE)
options( echo=TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.