dBetaBin | R Documentation |
These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Binomial Distribution.
dBetaBin(x,n,a,b)
x |
vector of binomial random variables. |
n |
single value for no of binomial trials. |
a |
single value for shape parameter alpha representing as a. |
b |
single value for shape parameter beta representing as b. |
Mixing Beta distribution with Binomial distribution will create the Beta-Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
P_{BetaBin}(x)= {n \choose x} \frac{B(a+x,n+b-x)}{B(a,b)}
a,b > 0
x = 0,1,2,3,...n
n = 1,2,3,...
The mean, variance and over dispersion are denoted as
E_{BetaBin}[x]= \frac{na}{a+b}
Var_{BetaBin}[x]= \frac{(nab)}{(a+b)^2} \frac{(a+b+n)}{(a+b+1)}
over dispersion= \frac{1}{a+b+1}
Defined as B(a,b)
is the beta function.
The output of dBetaBin
gives a list format consisting
pdf
probability function values in vector form.
mean
mean of the Beta-Binomial Distribution.
var
variance of the Beta-Binomial Distribution.
over.dis.para
over dispersion value of the Beta-Binomial Distribution.
young2008poolingfitODBOD \insertReftrenkler1996continuousfitODBOD \insertRefhughes1993usingfitODBOD
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Beta-binomial probability function graph",xlab="Binomial random variable",
ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dBetaBin(0:10,10,4,.2)$pdf #extracting the pdf values
dBetaBin(0:10,10,4,.2)$mean #extracting the mean
dBetaBin(0:10,10,4,.2)$var #extracting the variance
dBetaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value
#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",
ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
lines(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i])
points(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i])
}
pBetaBin(0:10,10,4,.2) #acquiring the cumulative probability values
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.