dTRI | R Documentation |
These functions provide the ability for generating probability density values, cumulative probability density values and moments about zero values for the Triangular Distribution bounded between [0,1].
dTRI(p,mode)
p |
vector of probabilities. |
mode |
single value for mode. |
Setting min=0
and max=1
mode=c
in the Triangular distribution
a unit bounded Triangular distribution can be obtained. The probability density function
and cumulative density function of a unit bounded Triangular distribution with random
variable P are given by
g_{P}(p)= \frac{2p}{c}
; 0 \le p < c
g_{P}(p)= \frac{2(1-p)}{(1-c)}
; c \le p \le 1
G_{P}(p)= \frac{p^2}{c}
; 0 \le p < c
G_{P}(p)= 1-\frac{(1-p)^2}{(1-c)}
; c \le p \le 1
0 \le mode=c \le 1
The mean and the variance are denoted by
E[P]= \frac{(a+b+c)}{3}= \frac{(1+c)}{3}
var[P]= \frac{a^2+b^2+c^2-ab-ac-bc}{18}= \frac{(1+c^2-c)}{18}
Moments about zero is denoted as
E[P^r]= \frac{2c^{r+2}}{c(r+2)}+\frac{2(1-c^{r+1})}{(1-c)(r+1)}+\frac{2(c^{r+2}-1)}{(1-c)(r+2)}
r = 1,2,3,...
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
The output of dTRI
gives a list format consisting
pdf
probability density values in vector form.
mean
mean of the unit bounded Triangular distribution.
variance
variance of the unit bounded Triangular distribution
horsnell1957economicalfitODBOD \insertRefjohnson1995continuousfitODBOD \insertRefkarlis2008polygonalfitODBOD \insertRefokagbue2014usingfitODBOD
#plotting the random variables and probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Probability density graph",xlab="Random variable",
ylab="Probability density values",xlim = c(0,1),ylim = c(0,3))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dTRI(seq(0,1,by=0.01),x[i])$pdf,col = col[i])
}
dTRI(seq(0,1,by=0.05),0.3)$pdf #extracting the pdf values
dTRI(seq(0,1,by=0.01),0.3)$mean #extracting the mean
dTRI(seq(0,1,by=0.01),0.3)$var #extracting the variance
#plotting the random variables and cumulative probability values
col <- rainbow(4)
x <- seq(0.2,0.8,by=0.2)
plot(0,0,main="Cumulative density graph",xlab="Random variable",
ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pTRI(seq(0,1,by=0.01),x[i]),col = col[i])
}
pTRI(seq(0,1,by=0.05),0.3) #acquiring the cumulative probability values
mazTRI(1.4,.3) #acquiring the moment about zero values
mazTRI(2,.3)-mazTRI(1,.3)^2 #variance for when is mode 0.3
#only the integer value of moments is taken here because moments cannot be decimal
mazTRI(1.9,0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.