dGBeta1 | R Documentation |
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Generalized Beta Type-1 Distribution bounded between [0,1].
dGBeta1(p,a,b,c)
p |
vector of probabilities. |
a |
single value for shape parameter alpha representing as a. |
b |
single value for shape parameter beta representing as b. |
c |
single value for shape parameter gamma representing as c. |
The probability density function and cumulative density function of a unit bounded Generalized Beta Type-1 Distribution with random variable P are given by
g_{P}(p)= \frac{c}{B(a,b)} p^{ac-1} (1-p^c)^{b-1}
; 0 \le p \le 1
G_{P}(p)= \frac{p^{ac}}{aB(a,b)} 2F1(a,1-b;p^c;a+1)
0 \le p \le 1
a,b,c > 0
The mean and the variance are denoted by
E[P]= \frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})}
var[P]= \frac{B(a+b,\frac{2}{c})}{B(a,\frac{2}{c})}-(\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})})^2
The moments about zero is denoted as
E[P^r]= \frac{B(a+b,\frac{r}{c})}{B(a,\frac{r}{c})}
r = 1,2,3,....
Defined as B(a,b)
is Beta function.
Defined as 2F1(a,b;c;d)
is Gaussian Hypergeometric function.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
The output of dGBeta1
gives a list format consisting
pdf
probability density values in vector form.
mean
mean of the Generalized Beta Type-1 Distribution.
var
variance of the Generalized Beta Type-1 Distribution.
manoj2013mcdonaldfitODBOD \insertRefjaniffer2014estimatingfitODBOD \insertRefroozegar2017mcdonaldfitODBOD
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(.1,.2,.3,1.5,2.15)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,10))
for (i in 1:5)
{
lines(seq(0,1,by=0.001),dGBeta1(seq(0,1,by=0.001),a[i],1,2*a[i])$pdf,col = col[i])
}
dGBeta1(seq(0,1,by=0.01),2,3,1)$pdf #extracting the pdf values
dGBeta1(seq(0,1,by=0.01),2,3,1)$mean #extracting the mean
dGBeta1(seq(0,1,by=0.01),2,3,1)$var #extracting the variance
pGBeta1(0.04,2,3,4) #acquiring the cdf values for a=2,b=3,c=4
mazGBeta1(1.4,3,2,2) #acquiring the moment about zero values
mazGBeta1(2,3,2,2)-mazGBeta1(1,3,2,2)^2 #acquiring the variance for a=3,b=2,c=2
#only the integer value of moments is taken here because moments cannot be decimal
mazGBeta1(3.2,3,2,2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.