| fitBetaBin | R Documentation |
The function will fit the Beta-Binomial distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.
fitBetaBin(x,obs.freq,a,b)
x |
vector of binomial random variables. |
obs.freq |
vector of frequencies. |
a |
single value for shape parameter alpha representing as a. |
b |
single value for shape parameter beta representing as b. |
0 < a,b
x = 0,1,2,...,n
obs.freq \ge 0
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
The output of fitBetaBin gives the class format fitBB and fit consisting a list
bin.ran.var binomial random variables.
obs.freq corresponding observed frequencies.
exp.freq corresponding expected frequencies.
statistic chi-squared test statistics.
df degree of freedom.
p.value probability value by chi-squared test statistic.
fitBB fitted values of dBetaBin.
NegLL Negative Log Likelihood value.
a estimated value for alpha parameter as a.
b estimated value for alpha parameter as b.
AIC AIC value.
over.dis.para over dispersion value.
call the inputs of the function.
Methods summary, print, AIC, residuals and fitted can be
used to extract specific outputs.
young2008poolingfitODBOD \insertReftrenkler1996continuousfitODBOD \insertRefhughes1993usingfitODBOD
mle2
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEBetaBin(No.D.D,Obs.fre.1,0.1,0.1)
bbmle::coef(parameters) #extracting the parameters a and b
aBetaBin <- bbmle::coef(parameters)[1] #assigning the parameter a
bBetaBin <- bbmle::coef(parameters)[2] #assigning the parameter b
#fitting when the random variable,frequencies,shape parameter values are given.
fitBetaBin(No.D.D,Obs.fre.1,aBetaBin,bBetaBin)
#estimating the parameters using moment generating function methods
results <- EstMGFBetaBin(No.D.D,Obs.fre.1)
results
aBetaBin1 <- results$a #assigning the estimated a
bBetaBin1 <- results$b #assigning the estimated b
#fitting when the random variable,frequencies,shape parameter values are given.
BB <- fitBetaBin(No.D.D,Obs.fre.1,aBetaBin1,bBetaBin1)
#extracting the expected frequencies
fitted(BB)
#extracting the residuals
residuals(BB)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.