Nothing
#' determine revert2ml or not
#' @return Logical
#' @inheritParams manf
calc_revert2ml=function(v5h,v6h,t3){
revert2ml=FALSE
for (i in 1:length(t3)){
xi=v5h+v6h*t3[i]
if(abs(xi)>=1)revert2ml=TRUE
}
return(revert2ml)
}
#' rgev for gev_p123 but with maxlik xi within bounds
#' @return Vector
#' @inheritParams manf
rgev_p123_minmax=function(nx,mu,sigma,xi,t1,t2,t3,minxi=-0.45,maxxi=0.45,centering=TRUE){
minxi1=-10
maxxi1=10
if(centering){
t1=t1-mean(t1)
t2=t2-mean(t2)
t3=t3-mean(t3)
}
while((minxi1<minxi)||(maxxi1>maxxi)){ #0.46 also works...0.47 doesn't
minxi1=9999
maxxi1=-9999
xx=extraDistr::rgev(nx,mu=mu,sigma=sigma,xi=xi)
ics=gev_p123_setics(xx,t1,t2,t3,c(0,0,0,0,0,0))
opt1=optim(ics,gev_p123_loglik,x=xx,t1=t1,t2=t2,t3=t3,control=list(fnscale=-1))
for (i in 1:nx){
xihat=opt1$par[5]+opt1$par[6]*t3[i]
minxi1=min(minxi1,xihat)
maxxi1=max(maxxi1,xihat)
}
}
return(xx)
}
#' Waic
#' @inherit manwaic return
#' @inheritParams manf
gev_p123_waic=function(waicscores,x,t1,t2,t3,v1h,d1,v2h,d2,v3h,d3,v4h,d4,v5h,d5,v6h,d6,
lddi,lddd,lambdad,aderivs){
if(waicscores){
if(aderivs){
f1f=gev_p123_f1fa(x,t1,t2,t3,v1h,v2h,v3h,v4h,v5h,v6h)
f2f=gev_p123_f2fa(x,t1,t2,t3,v1h,v2h,v3h,v4h,v5h,v6h)
} else {
f1f=gev_p123_f1f(x,t1,t2,t3,v1h,d1,v2h,d2,v3h,d3,v4h,d4,v5h,d5,v6h,d6)
f2f=gev_p123_f2f(x,t1,t2,t3,v1h,d1,v2h,d2,v3h,d3,v4h,d4,v5h,d5,v6h,d6)
}
fhatx=dgev_p123(x,t1,t2,t3,ymn=v1h,slope=v2h,sigma1=v3h,sigma2=v4h,xi1=v5h,xi2=v6h,log=FALSE)
waic=make_waic(x,fhatx,lddi,lddd,f1f,lambdad,f2f,dim=6)
waic1=waic$waic1
waic2=waic$waic2
}else{
waic1="waicscores not selected"
waic2="waicscores not selected"
}
list(waic1=waic1,waic2=waic2)
}
# shape parameter:
# -limit the high and low values of xi at the most inner level in the calls to d,p,q,r routines
#
# #' Limit xi
# #' @inheritParams manf
# gev_p123_limitxi=function(xi,minxi,maxxi){
# currently not using this though...need to think
# this gives a function:
# -with gradient 1 at zero
# -with a range from minxi to maxxi
# -so the xi value in my code is not really xi, it's a value from -inf to inf
# -which gets transformed to the xireal, which runs from minxi to maxxi
# -and which is what is actually used in the external gev routines
# -the offset and slope parameters apply to the fake xi, not the real xi
# -I don't need checkmle anymore, because any values work out
# range=maxxi-minxi
# nn=plogis(xi*4.445177) #new version using plogis, which should be faster
# nn=pnorm(xi*2.7855) #old version using pnorm
# xi=range*nn+minxi
# return(xi)
#}
#' Predicted Parameter and Generalized Residuals
#' @inherit manpredictor return
#' @inheritParams manf
gev_p123_predictordata=function(x,t1,t2,t3,t01,t02,t03,params){
#
# calculate the probabilities of the data using the fited model
#
# t is always a matrix
# t0 is always a vector
a=params[1]
b=params[2]
sc1=params[3]
sc2=params[4]
sh1=params[5]
sh2=params[6]
mu=a+b*t1
sigma=exp(sc1+sc2*t2)
xi=sh1+sh2*t3
# xireal=gev_p123_limitxi(xi)
px=extraDistr::pgev(x,mu=mu,sigma=sigma,xi=xi)
#
# calculate the quantiles for those probabilities at t01,t02
#
mu0=a+b*t01
sigma0=exp(sc1+sc2*t02)
xi0=sh1+sh2*t03
# xi0real=gev_p123_limitxi(xi0)
qx=extraDistr::qgev(px,mu=mu0,sigma=sigma0,xi=xi0)
predictedparameter="predictordata not selected"
adjustedx="predictordata not selected"
list(predictedparameter=mu,adjustedx=qx)
}#' Logf for RUST
#' @inherit manlogf return
#' @inheritParams manf
gev_p123_logf=function(params,x,t1,t2,t3){
a=params[1]
b=params[2]
sc1=params[3]
sc2=params[4]
sh1=params[5]
sh2=params[6]
# if(is.vector(t)){
# mu=a+b*t1
# sigma=exp(sc1+sc2*t2)
# } else {
# mu=a+b*t1
# sigma=exp(sc1+sc2*t2)
# }
mu=a+b*t1
sigma=exp(sc1+sc2*t2)
xi=sh1+sh2*t3
# xireal=gev_p123_limitxi(xi)
logf=sum(extraDistr::dgev(x,mu=mu,sigma=sigma,xi=xi,log=TRUE))
return(logf)
}#' Set initial conditions
#' @return Vector
#' @inheritParams manf
gev_p123_setics=function(x,t1,t2,t3,ics){
# t is always a matrix
nx=length(x)
if((ics[1]==0)&&(ics[2]==0)&&(ics[3]==0)&&(ics[4]==0)&&(ics[5]==0)&&(ics[6]==0)){
lm=lm(x~t1)
ics[1]=lm$coefficients[1]
ics[2]=lm$coefficients[2]
xhat=ics[1]+ics[2]*t1
ics[3]=0
ics[4]=0 #should be zero because it's inside an exponential
ics[5]=0
ics[6]=0 #should be zero because that's the best starting point for xi
}
return(ics)
}
#' observed log-likelihood function
#' @inherit manloglik return
#' @inheritParams manf
gev_p123_loglik=function(vv,x,t1,t2,t3){
# note that this is the loglik versus the transformed xi parameter
# t is always a matrix
n=length(x)
mu=vv[1]+vv[2]*t1 #so mean is a vector, just like x
sigma=exp(vv[3]+vv[4]*t2)
xi=vv[5]+vv[6]*t3
# xireal=gev_p123_limitxi(xi)
loglik=sum(extraDistr::dgev(x,mu=mu,sigma=sigma,xi=xi,log=TRUE))
return(loglik)
}
#' Check MLE
#' @return No return value (just a message to the screen).
#' @inheritParams manf
gev_p123_checkmle=function(ml_params,minxi,maxxi,t1,t2,t3){
# not used anymore, now that I use xireal and the transformation thing
v1h=ml_params[1]
v2h=ml_params[2]
v3h=ml_params[3]
v4h=ml_params[4]
v5h=ml_params[5]
v6h=ml_params[6]
if(is.na(v1h))stop()
if(is.na(v2h))stop()
if(is.na(v3h))stop()
if(is.na(v4h))stop()
if(is.na(v5h))stop()
if(is.na(v6h))stop()
for (i in 1:length(t3)){
xi=v5h+v6h*t3[i]
# xireal=gev_p123_limitxi(xi)
if(xi<minxi){warning("\n***v5h,v6h=",v5h,v6h,xi,"=> execution halted because maxlik shape parameter <",minxi,"***");stop()}
if(xi>maxxi){warning("\n***v6h,v6h=",v5h,v6h,xi,"=> execution halted because maxlik shape parameter >",maxxi,"***");stop()}
}
}
#' GEVD-with-p1: Quantile function
#' @inherit manvector return
#' @inheritParams manf
qgev_p123=function(p,t1,t2,t3,ymn,slope,sigma1,sigma2,xi1,xi2){
# t is sometimes a vector, sometimes a matrix
# if(is.vector(t)){
# mu=ymn+slope*t1
# sigma=exp(sigma1+sigma2*t2)
# xi=xi1+xi2*t3
# } else {
# mu=ymn+slope*t1
# sigma=exp(sigma1+sigma2*t2)
# xi=xi1+xi2*t3
# }
mu=ymn+slope*t1
sigma=exp(sigma1+sigma2*t2)
xi=xi1+xi2*t3
# xireal=gev_p123_limitxi(xi)
return(extraDistr::qgev(p,mu=mu,sigma=sigma,xi=xi))
}
#' GEVD-with-p1: Density function
#' @inherit manvector return
#' @inheritParams manf
dgev_p123=function(x,t1,t2,t3,ymn,slope,sigma1,sigma2,xi1,xi2,log=FALSE){
# t is sometimes a vector, sometimes a matrix
# if(is.vector(t)){
# mu=ymn+slope*t1
# sigma=exp(sigma1+sigma2*t2)
# xi=xi1+xi2*t3
# } else {
# mu=ymn+slope*t1
# sigma=exp(sigma1+sigma2*t2)
# xi=xi1+xi2*t3
# }
mu=ymn+slope*t1
sigma=exp(sigma1+sigma2*t2)
xi=xi1+xi2*t3
# xireal=gev_p123_limitxi(xi)
return(extraDistr::dgev(x,mu=mu,sigma=sigma,xi=xi,log=log))
}
#' GEVD-with-p1: Distribution function
#' @inherit manvector return
#' @inheritParams manf
pgev_p123=function(y,t1,t2,t3,ymn,slope,sigma1,sigma2,xi1,xi2){
# t is sometimes a vector, sometimes a matrix
# if(is.vector(t)){
# mu=ymn+slope*t1
# sigma=exp(sigma1+sigma2*t2)
# xi=xi1+xi2*t3
# } else {
# mu=ymn+slope*t1
# sigma=exp(sigma1+sigma2*t2)
# xi=xi1+xi2*t3
# }
mu=ymn+slope*t1
sigma=exp(sigma1+sigma2*t2)
xi=xi1+xi2*t3
# xireal=gev_p123_limitxi(xi)
return(extraDistr::pgev(y,mu=mu,sigma=sigma,xi=xi))
}
#' One component of the second derivative of the normalized log-likelihood
#' @inherit manlnn return
#' @inheritParams manf
gev_p123_lmn=function(x,t1,t2,t3,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6,mm,nn){
nparams=6
nlmn3=3
nlmn4=4
net3=matrix(0,nlmn3,nparams)
net4=matrix(0,nlmn4,nparams)
lmn=matrix(0,nlmn4)
dd=c(d1,d2,d3,d4,d5,d6)
vv=c(v1,v2,v3,v4,v5,v6)
vvd=matrix(0,nparams)
nx=length(x)
# different
if(mm!=nn){
net4[,mm]=c(-1,-1,1,1)
net4[,nn]=c(-1,1,-1,1)
for (i in 1:nlmn4){
for (j in 1:nparams){
vvd[j]=vv[j]+net4[i,j]*dd[j]
}
lmn[i]=sum(dgev_p123(x,t1,t2,t3,ymn=vvd[1],slope=vvd[2],sigma1=vvd[3],sigma2=vvd[4],xi1=vvd[5],xi2=vvd[6],log=TRUE))/nx
}
dld=(lmn[1]-lmn[2]-lmn[3]+lmn[4])/(4*dd[mm]*dd[nn])
# same
} else {
net3[,mm]=c(-1,0,1)
for (i in 1:(nlmn4-1)){
for (j in 1:nparams){
vvd[j]=vv[j]+net3[i,j]*dd[j]
}
lmn[i]=sum(dgev_p123(x,t1,t2,t3,ymn=vvd[1],slope=vvd[2],sigma1=vvd[3],sigma2=vvd[4],xi1=vvd[5],xi2=vvd[6],log=TRUE))/nx
}
dld=(lmn[1]-2*lmn[2]+lmn[3])/(dd[mm]*dd[mm])
}
return(dld)
}
#' Second derivative matrix of the normalized log-likelihood
#' @inherit manldd return
#' @inheritParams manf
gev_p123_ldd=function(x,t1,t2,t3,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6){
nx=length(x)
nparams=6
ldd=matrix(0,nparams,nparams)
for (i in 1:nparams){
for (j in i:nparams){
ldd[i,j]=gev_p123_lmn(x,t1,t2,t3,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6,i,j)
}
}
for (i in nparams:2){
for (j in 1:(i-1)){
ldd[i,j]=ldd[j,i]
}
}
return(ldd)
}
#' One component of the second derivative of the normalized log-likelihood
#' @inherit manlnnn return
#' @inheritParams manf
gev_p123_lmnp=function(x,t1,t2,t3,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6,mm,nn,rr){
nparams=6
nlmn4=4
nlmn6=6
nlmn8=8
net4=matrix(0,nlmn4,nparams)
net6=matrix(0,nlmn6,nparams)
net8=matrix(0,nlmn8,nparams)
lmn=matrix(0,nlmn8)
dd=c(d1,d2,d3,d4,d5,d6)
vv=c(v1,v2,v3,v4,v5,v6)
vvd=matrix(0,nparams)
nx=length(x)
# all diff
if ((mm!=nn)&(nn!=rr)&(rr!=mm)){
net8[,mm]=c(-1,1,-1,1,-1,1,-1,1)
net8[,nn]=c(-1,-1,1,1,-1,-1,1,1)
net8[,rr]=c(-1,-1,-1,-1,1,1,1,1)
for (i in 1:nlmn8){
for (j in 1:nparams){
vvd[j]=vv[j]+net8[i,j]*dd[j]
}
lmn[i]=sum(dgev_p123(x,t1,t2,t3,ymn=vvd[1],slope=vvd[2],sigma1=vvd[3],sigma2=vvd[4],xi1=vvd[5],xi2=vvd[6],log=TRUE))/nx
}
dld1=(lmn[2]-lmn[1])/(2*dd[mm])
dld2=(lmn[4]-lmn[3])/(2*dd[mm])
dld21=(dld2-dld1)/(2*dd[nn])
dld3=(lmn[6]-lmn[5])/(2*dd[mm])
dld4=(lmn[8]-lmn[7])/(2*dd[mm])
dld43=(dld4-dld3)/(2*dd[nn])
dld=(dld43-dld21)/(2*dd[rr])
# all 3 the same
} else if ((mm==nn)&(nn==rr)){
net4[,mm]=c(-2,-1,1,2)
for (i in 1:nlmn4){
for (j in 1:nparams){
vvd[j]=vv[j]+net4[i,j]*dd[j]
}
lmn[i]=sum(dgev_p123(x,t1,t2,t3,ymn=vvd[1],slope=vvd[2],sigma1=vvd[3],sigma2=vvd[4],xi1=vvd[5],xi2=vvd[6],log=TRUE))/nx
}
dld=(-lmn[1]+2*lmn[2]-2*lmn[3]+lmn[4])/(2*dd[mm]*dd[mm]*dd[mm])
} else {
# 2 the same
# mm is the repeated one, nn is the other one
if(mm==nn){m2=mm;n2=rr}
if(mm==rr){m2=mm;n2=nn}
if(nn==rr){m2=nn;n2=mm}
net6[,m2]=c(-1,0,1,-1,0,1)
net6[,n2]=c(-1,-1,-1,1,1,1)
for (i in 1:nlmn6){
for (j in 1:nparams){
vvd[j]=vv[j]+net6[i,j]*dd[j]
}
lmn[i]=sum(dgev_p123(x,t1,t2,t3,ymn=vvd[1],slope=vvd[2],sigma1=vvd[3],sigma2=vvd[4],xi1=vvd[5],xi2=vvd[6],log=TRUE))/nx
}
dld1=(lmn[3]-2*lmn[2]+lmn[1])/(dd[m2]*dd[m2])
dld2=(lmn[6]-2*lmn[5]+lmn[4])/(dd[m2]*dd[m2])
dld=(dld2-dld1)/(2*dd[n2])
}
return(dld)
}
#' Third derivative tensor of the normalized log-likelihood, with fixed shape parameter
#' @inherit manlddd return
#' @inheritParams manf
gev_p123_lddd=function(x,t1,t2,t3,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6){
nparams=6
lddd=array(0,c(nparams,nparams,nparams))
# calculate the unique values
for (i in 1:nparams){
for (j in i:nparams){
for (k in j:nparams){
lddd[i,j,k]=gev_p123_lmnp(x,t1,t2,t3,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6,i,j,k)
}
}
}
# steves dumb algorithm for filling in the non-unique values
for (i in 1:nparams){
for (j in 1:nparams){
for (k in 1:nparams){
a=c(i,j,k)
b=sort(a)
lddd[a[1],a[2],a[3]]=lddd[b[1],b[2],b[3]]
}
}
}
return(lddd)
}
#' DMGS equation 2.1, f1 term, fixed shape parameter
#' DMGS equation 2.1, f1 term
#' @inherit man1f return
#' @inheritParams manf
gev_p123_f1f=function(y,t01,t02,t03,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6){
nparams=6
ymax=ifelse((v5+v6*t03)<0,v1+v2*t01-2*(d1+d2*t01)-(exp(v3+v4*t02)-2*(d3+d4*t01))/(v5+v6*t03),Inf)
# ymax=ifelse(v4<0,v1+v2*t01-2*(d1+d2*t01)-(v3-2*d3)/(v4-2*d4),Inf)
# new method
dd=c(d1,d2,d3,d4,d5,d6)
vv=c(v1,v2,v3,v4,v5,v6)
f1=matrix(0,nparams,length(y))
for (i in 1:nparams){
vvm=vv
vvp=vv
vvm[i]=vv[i]-dd[i]
vvp[i]=vv[i]+dd[i]
Fm1=dgev_p123(y,t01,t02,t03,ymn=vvm[1],slope=vvm[2],sigma1=vvm[3],sigma2=vvm[4],xi1=vvm[5],xi2=vvm[6])
Fp1=dgev_p123(y,t01,t02,t03,ymn=vvp[1],slope=vvp[2],sigma1=vvp[3],sigma2=vvp[4],xi1=vvp[5],xi2=vvp[6])
f1[i,]=ifelse(y<ymax,(Fp1-Fm1)/(2*dd[i]),0)
}
return(f1)
}
#' GEVD-with-p1: DMGS equation 3.3 mu1 term
#' @inherit man1f return
#' @inheritParams manf
gev_p123_mu1f=function(alpha,t01,t02,t03,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6){
nparams=6
q00=qgev_p123((1-alpha),t01,t02,t03,ymn=v1,slope=v2,sigma1=v3,sigma2=v4,xi1=v5,xi2=v6)
# new method
dd=c(d1,d2,d3,d4,d5,d6)
vv=c(v1,v2,v3,v4,v5,v6)
mu1=matrix(0,nparams,length(alpha))
for (i in 1:nparams){
vvm=vv
vvp=vv
vvm[i]=vv[i]-dd[i]
vvp[i]=vv[i]+dd[i]
Fm1=pgev_p123(q00,t01,t02,t03,ymn=vvm[1],slope=vvm[2],sigma1=vvm[3],sigma2=vvm[4],xi1=vvm[5],xi2=vvm[6])
Fp1=pgev_p123(q00,t01,t02,t03,ymn=vvp[1],slope=vvp[2],sigma1=vvp[3],sigma2=vvp[4],xi1=vvp[5],xi2=vvp[6])
mu1[i,]=-(Fp1-Fm1)/(2*dd[i])
}
return(mu1)
}
#' GEVD-with-p1: DMGS equation 1.2 f2 term
#' @inherit man2f return
#' @inheritParams manf
gev_p123_f2f=function(y,t01,t02,t03,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6){
nparams=6
ymax=ifelse((v5+v6*t03)<0,v1+v2*t01-2*(d1+d2*t01)-(exp(v3+v4*t02)-2*(d3+d4*t01))/(v5+v6*t03),Inf)
# ymax=ifelse(v4<0,v1+v2*t0-2*(d1+d2*t0)-(v3-2*d3)/(v4-2*d4),Inf)
# new method
dd=c(d1,d2,d3,d4,d5,d6)
vv=c(v1,v2,v3,v4,v5,v6)
f2=array(0,c(nparams,nparams,length(y)))
for (i in 1:nparams){
for (j in 1:nparams){
if(i==j){
vvm=vv
vv0=vv
vvp=vv
vvm[i]=vv[i]-dd[i]
vvp[i]=vv[i]+dd[i]
Fm1=dgev_p123(y,t01,t02,t03,ymn=vvm[1],slope=vvm[2],sigma1=vvm[3],sigma2=vvm[4],xi1=vvm[5],xi2=vvm[6])
F00=dgev_p123(y,t01,t02,t03,ymn=vv0[1],slope=vv0[2],sigma1=vv0[3],sigma2=vv0[4],xi1=vv0[5],xi2=vv0[6])
Fp1=dgev_p123(y,t01,t02,t03,ymn=vvp[1],slope=vvp[2],sigma1=vvp[3],sigma2=vvp[4],xi1=vvp[5],xi2=vvp[6])
f2[i,i,]=ifelse(y<ymax,(Fp1-2*F00+Fm1)/(dd[i]*dd[i]),0)
} else if(i<j) {
vvmm=vv
vvmp=vv
vvpm=vv
vvpp=vv
vvmm[i]=vv[i]-dd[i];vvmm[j]=vv[j]-dd[j]
vvmp[i]=vv[i]-dd[i];vvmp[j]=vv[j]+dd[j]
vvpm[i]=vv[i]+dd[i];vvpm[j]=vv[j]-dd[j]
vvpp[i]=vv[i]+dd[i];vvpp[j]=vv[j]+dd[j]
Fm1m1=dgev_p123(y,t01,t02,t03,ymn=vvmm[1],slope=vvmm[2],sigma1=vvmm[3],sigma2=vvmm[4],xi1=vvmm[5],xi2=vvmm[6])
Fm1p1=dgev_p123(y,t01,t02,t03,ymn=vvmp[1],slope=vvmp[2],sigma1=vvmp[3],sigma2=vvmp[4],xi1=vvmp[5],xi2=vvmp[6])
Fp1m1=dgev_p123(y,t01,t02,t03,ymn=vvpm[1],slope=vvpm[2],sigma1=vvpm[3],sigma2=vvpm[4],xi1=vvpm[5],xi2=vvpm[6])
Fp1p1=dgev_p123(y,t01,t02,t03,ymn=vvpp[1],slope=vvpp[2],sigma1=vvpp[3],sigma2=vvpp[4],xi1=vvpp[5],xi2=vvpp[6])
f2[i,j,]=ifelse(y<ymax,(Fp1p1-Fm1p1-Fp1m1+Fm1m1)/(4*dd[i]*dd[j]),0)
f2[j,i,]=f2[i,j,]
}
}
}
return(f2)
}
#' GEVD-with-p1: DMGS equation 3.3 mu2 term
#' @inherit man2f return
#' @inheritParams manf
gev_p123_mu2f=function(alpha,t01,t02,t03,v1,d1,v2,d2,v3,d3,v4,d4,v5,d5,v6,d6){
nparams=6
q00=qgev_p123((1-alpha),t01,t02,t03,ymn=v1,slope=v2,sigma1=v3,sigma2=v4,xi1=v5,xi2=v6)
# new method
dd=c(d1,d2,d3,d4,d5,d6)
vv=c(v1,v2,v3,v4,v5,v6)
mu2=array(0,c(nparams,nparams,length(alpha)))
for (i in 1:nparams){
for (j in 1:nparams){
if(i==j){
vvm=vv
vv0=vv
vvp=vv
vvm[i]=vv[i]-dd[i]
vvp[i]=vv[i]+dd[i]
Fm1=pgev_p123(q00,t01,t02,t03,ymn=vvm[1],slope=vvm[2],sigma1=vvm[3],sigma2=vvm[4],xi1=vvm[5],xi2=vvm[6])
F00=pgev_p123(q00,t01,t02,t03,ymn=vv0[1],slope=vv0[2],sigma1=vv0[3],sigma2=vv0[4],xi1=vv0[5],xi2=vv0[6])
Fp1=pgev_p123(q00,t01,t02,t03,ymn=vvp[1],slope=vvp[2],sigma1=vvp[3],sigma2=vvp[4],xi1=vvp[5],xi2=vvp[6])
mu2[i,i,]=-(Fp1-2*F00+Fm1)/(dd[i]*dd[i])
} else if(i<j) {
vvmm=vv
vvmp=vv
vvpm=vv
vvpp=vv
vvmm[i]=vv[i]-dd[i];vvmm[j]=vv[j]-dd[j]
vvmp[i]=vv[i]-dd[i];vvmp[j]=vv[j]+dd[j]
vvpm[i]=vv[i]+dd[i];vvpm[j]=vv[j]-dd[j]
vvpp[i]=vv[i]+dd[i];vvpp[j]=vv[j]+dd[j]
Fm1m1=pgev_p123(q00,t01,t02,t03,ymn=vvmm[1],slope=vvmm[2],sigma1=vvmm[3],sigma2=vvmm[4],xi1=vvmm[5],xi2=vvmm[6])
Fm1p1=pgev_p123(q00,t01,t02,t03,ymn=vvmp[1],slope=vvmp[2],sigma1=vvmp[3],sigma2=vvmp[4],xi1=vvmp[5],xi2=vvmp[6])
Fp1m1=pgev_p123(q00,t01,t02,t03,ymn=vvpm[1],slope=vvpm[2],sigma1=vvpm[3],sigma2=vvpm[4],xi1=vvpm[5],xi2=vvpm[6])
Fp1p1=pgev_p123(q00,t01,t02,t03,ymn=vvpp[1],slope=vvpp[2],sigma1=vvpp[3],sigma2=vvpp[4],xi1=vvpp[5],xi2=vvpp[6])
mu2[i,j,]=-(Fp1p1-Fm1p1-Fp1m1+Fm1m1)/(4*dd[i]*dd[j])
mu2[j,i,]=mu2[i,j,]
}
}
}
return(mu2)
}
#' Analytical expressions for Predictive Means
#' RHP mean based on the expectation of DMGS equation 2.1
#' @inherit manmeans return
#' @inheritParams manf
gev_p123_means=function(means,t01,t02,t03,ml_params,nx){
if(means){
# intro
eulerconstant=0.57721566490153286060651209008240243104215933593992
ymn=ml_params[1]
slope=ml_params[2]
sigma1=ml_params[3]
sigma2=ml_params[4]
sigma=exp(sigma1+sigma2*t02)
xi1=ml_params[5]
xi2=ml_params[6]
xi=xi1+xi2*t03
if(xi==0){
# xi=0 case
ml_mean=ymn+slope*t01+sigma*eulerconstant
} else{
# non-gumbel case
g0=gamma(1-xi)
g1=g0*digamma(1-xi)
g2=(trigamma(1-xi)*g0*g0+g1*g1)/g0
ml_mean=ymn+slope*t01+sigma*(g0-1)/xi
}
# return
crhp_mle_mean="haven't worked it out yet"
pu_mean=Inf
}else{
pu_mean="means not selected"
ml_mean="means not selected"
crhp_mle_mean="means not selected"
}
list(ml_mean=ml_mean,crhp_mle_mean=crhp_mle_mean,pu_mean=pu_mean)
}
#' Densities for 5 predictions
#' @inherit mandsub return
#' @inheritParams manf
dgev_p123sub=function(x,t1,t2,t3,y,t01,t02,t03,ics,d1=0.01,d2=0.01,d3=0.01,d4=0.01,d5=0.01,d6=0.01,
extramodels,debug,aderivs=TRUE){
nx=length(x)
ics=gev_p123_setics(x,t1,t2,t3,ics)
opt=optim(ics,gev_p123_loglik,x=x,t1=t1,t2=t2,t3=t3,control=list(fnscale=-1))
v1h=opt$par[1]
v2h=opt$par[2]
v3h=opt$par[3]
v4h=opt$par[4]
v5h=opt$par[5]
v6h=opt$par[6]
ml_params=c(v1h,v2h,v3h,v4h,v5h,v6h)
# now that I've dropped dmgs d and p, I don't think I need this anymore
# muhat0=v1h+v2h*t01
# sghat0=exp(v3h+v4h*t02)
# xihat0=v5h+v6h*t3
# y=fixgevrange(y,muhat0,sghat0,xihat0)
# mle
ml_pdf=dgev_p123(y,t01,t02,t03,ymn=v1h,slope=v2h,sigma1=v3h,sigma2=v4h,xi1=v5h,xi2=v6h)
ml_cdf=pgev_p123(y,t01,t02,t03,ymn=v1h,slope=v2h,sigma1=v3h,sigma2=v4h,xi1=v5h,xi2=v6h)
# return
list( ml_params=ml_params,
ml_pdf=ml_pdf,
ml_cdf=ml_cdf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.