Nothing
#' Waic
#' @inherit manwaic return
#' @inheritParams manf
lnorm_dmgs_waic=function(waicscores,x,v1hat,d1,v2hat,fd2,lddi,lddd,lambdad,aderivs){
if(waicscores){
if(aderivs) f1f=lnorm_f1fa(x,v1hat,v2hat)
if(!aderivs)f1f=lnorm_f1f(x,v1hat,d1,v2hat,fd2)
if(aderivs) f2f=lnorm_f2fa(x,v1hat,v2hat)
if(!aderivs)f2f=lnorm_f2f(x,v1hat,d1,v2hat,fd2)
fhatx=dlnorm(x,meanlog=v1hat,sdlog=v2hat)
waic=make_waic(x,fhatx,lddi,lddd,f1f,lambdad,f2f,dim=2)
waic1=waic$waic1
waic2=waic$waic2
}else{
waic1="waicscores not selected"
waic2="waicscores not selected"
}
list(waic1=waic1,waic2=waic2)
}
#' log-likelihood function
#' @inherit manlogf return
#' @inheritParams manf
lnorm_dmgs_loglik=function(vv,x){
loglik=sum(dlnorm(x,meanlog=vv[1],sdlog=max(vv[2],.Machine$double.eps),log=TRUE))
return(loglik)
}
#' One component of the second derivative of the expected log-likelihood
#' @inherit manlnn return
#' @inheritParams manf
lnorm_dmgs_gg11=function(alpha,v1,d1,v2,fd2){
x=qlnorm((1-alpha),meanlog=v1,sdlog=v2)
d2=v2*fd2
l0=dlnorm(x,meanlog=v1, sdlog=v2,log=TRUE)
lm=dlnorm(x,meanlog=v1-d1,sdlog=v2,log=TRUE)
lp=dlnorm(x,meanlog=v1+d1,sdlog=v2,log=TRUE)
d2ld2=(lp-2*l0+lm)/(d1*d1)
integrand=d2ld2
return(integrand)
}
#' One component of the second derivative of the expected log-likelihood
#' @inherit manlnn return
#' @inheritParams manf
lnorm_dmgs_gg12=function(alpha,v1,d1,v2,fd2){
x=qlnorm((1-alpha),meanlog=v1,sdlog=v2)
d2=v2*fd2
lmm=dlnorm(x,meanlog=v1-d1,sdlog=v2-d2,log=TRUE)
lpm=dlnorm(x,meanlog=v1+d1,sdlog=v2-d2,log=TRUE)
lmp=dlnorm(x,meanlog=v1-d1,sdlog=v2+d2,log=TRUE)
lpp=dlnorm(x,meanlog=v1+d1,sdlog=v2+d2,log=TRUE)
d2ld12=(lpp-lmp-lpm+lmm)/(4*d1*d2)
integrand=d2ld12
return(integrand)
}
#' One component of the second derivative of the expected log-likelihood
#' @inherit manlnn return
#' @inheritParams manf
lnorm_dmgs_gg22=function(alpha,v1,d1,v2,fd2){
x=qlnorm((1-alpha),meanlog=v1,sdlog=v2)
d2=v2*fd2
l0=dlnorm(x,meanlog=v1,sdlog=v2,log=TRUE)
lm=dlnorm(x,meanlog=v1,sdlog=v2-d2,log=TRUE)
lp=dlnorm(x,meanlog=v1,sdlog=v2+d2,log=TRUE)
d2ld2=(lp-2*l0+lm)/(d2*d2)
integrand=d2ld2
return(integrand)
}
#' DMGS equation 3.3, p1 term
#' @inherit man1f return
#' @inheritParams manf
lnorm_dmgs_p1f=function(y,v1,d1,v2,fd2){
d2=fd2*v2
# v1 stuff
v1m1=v1-1*d1
v100=v1+0*d1
v1p1=v1+1*d1
# v2 stuff
v2m1=v2-1*d2
v200=v2+0*d2
v2p1=v2+1*d2
# v1 derivatives
F1m1=plnorm(y,meanlog=v1m1,sdlog=v200)
F1p1=plnorm(y,meanlog=v1p1,sdlog=v200)
# v2 derivatives
F2m1=plnorm(y,meanlog=v100,sdlog=v2m1)
F2p1=plnorm(y,meanlog=v100,sdlog=v2p1)
p1=matrix(0,2,length(y))
p1[1,]=(F1p1-F1m1)/(2*d1)
p1[2,]=(F2p1-F2m1)/(2*d2)
return(p1)
}
#' DMGS equation 3.3, mu1 term
#' @inherit man1f return
#' @inheritParams manf
lnorm_dmgs_mu1f=function(alpha,v1,d1,v2,fd2){
q00=qlnorm((1-alpha),meanlog=v1,sdlog=v2)
d2=fd2*v2
# v1 stuff
v1m1=v1-1*d1
v100=v1+0*d1
v1p1=v1+1*d1
# v2 stuff
v2m1=v2-1*d2
v200=v2+0*d2
v2p1=v2+1*d2
# v1 derivatives
F1m1=plnorm(q00,meanlog=v1m1,sdlog=v200)
F1p1=plnorm(q00,meanlog=v1p1,sdlog=v200)
# v2 derivatives
F2m1=plnorm(q00,meanlog=v100,sdlog=v2m1)
F2p1=plnorm(q00,meanlog=v100,sdlog=v2p1)
mu1=matrix(0,2,length(alpha))
mu1[1,]=-(F1p1-F1m1)/(2*d1)
mu1[2,]=-(F2p1-F2m1)/(2*d2)
return(mu1)
}
#' DMGS equation 3.3, p2 term
#' @inherit man2f return
#' @inheritParams manf
lnorm_dmgs_p2f=function(y,v1,d1,v2,fd2){
d2=fd2*v2
# v1 stuff
v1m2=v1-2*d1
v1m1=v1-1*d1
v100=v1+0*d1
v1p1=v1+1*d1
v1p2=v1+2*d1
# v2 stuff
v2m2=v2-2*d2
v2m1=v2-1*d2
v200=v2+0*d2
v2p1=v2+1*d2
v2p2=v2+2*d2
F1m2=plnorm(y,meanlog=v1m2,sdlog=v200)
F1m1=plnorm(y,meanlog=v1m1,sdlog=v200)
F100=plnorm(y,meanlog=v100,sdlog=v200)
F1p1=plnorm(y,meanlog=v1p1,sdlog=v200)
F1p2=plnorm(y,meanlog=v1p2,sdlog=v200)
# v2 derivative
F2m2=plnorm(y,meanlog=v100,sdlog=v2m2)
F2m1=plnorm(y,meanlog=v100,sdlog=v2m1)
F200=plnorm(y,meanlog=v100,sdlog=v200)
F2p1=plnorm(y,meanlog=v100,sdlog=v2p1)
F2p2=plnorm(y,meanlog=v100,sdlog=v2p2)
# cross derivative
Fcm1m1=plnorm(y,meanlog=v1m1,sdlog=v2m1)
Fcm1p1=plnorm(y,meanlog=v1m1,sdlog=v2p1)
Fcp1m1=plnorm(y,meanlog=v1p1,sdlog=v2m1)
Fcp1p1=plnorm(y,meanlog=v1p1,sdlog=v2p1)
p2=array(0,c(2,2,length(y)))
p2[1,1,]=(F1p1-2*F100+F1m1)/(d1*d1)
p2[2,2,]=(F2p1-2*F200+F2m1)/(d2*d2)
p2[1,2,]=(Fcp1p1-Fcm1p1-Fcp1m1+Fcm1m1)/(4*d1*d2)
# copy
p2[2,1,]=p2[1,2,]
return(p2)
}
#' DMGS equation 3.3, mu2 term
#' @inherit man2f return
#' @inheritParams manf
lnorm_dmgs_mu2f=function(alpha,v1,d1,v2,fd2){
q00=qlnorm((1-alpha),meanlog=v1,sdlog=v2)
d2=fd2*v2
# v1 stuff
v1m2=v1-2*d1
v1m1=v1-1*d1
v100=v1+0*d1
v1p1=v1+1*d1
v1p2=v1+2*d1
# v2 stuff
v2m2=v2-2*d2
v2m1=v2-1*d2
v200=v2+0*d2
v2p1=v2+1*d2
v2p2=v2+2*d2
mu2=array(0,c(2,2,length(alpha)))
F1m2=plnorm(q00,meanlog=v1m2,sdlog=v200)
F1m1=plnorm(q00,meanlog=v1m1,sdlog=v200)
F100=plnorm(q00,meanlog=v100,sdlog=v200)
F1p1=plnorm(q00,meanlog=v1p1,sdlog=v200)
F1p2=plnorm(q00,meanlog=v1p2,sdlog=v200)
# v2 derivative
F2m2=plnorm(q00,meanlog=v100,sdlog=v2m2)
F2m1=plnorm(q00,meanlog=v100,sdlog=v2m1)
F200=plnorm(q00,meanlog=v100,sdlog=v200)
F2p1=plnorm(q00,meanlog=v100,sdlog=v2p1)
F2p2=plnorm(q00,meanlog=v100,sdlog=v2p2)
# cross derivative
Fcm1m1=plnorm(q00,meanlog=v1m1,sdlog=v2m1)
Fcm1p1=plnorm(q00,meanlog=v1m1,sdlog=v2p1)
Fcp1m1=plnorm(q00,meanlog=v1p1,sdlog=v2m1)
Fcp1p1=plnorm(q00,meanlog=v1p1,sdlog=v2p1)
mu2[1,1,]=-(F1p1-2*F100+F1m1)/(d1*d1)
mu2[2,2,]=-(F2p1-2*F200+F2m1)/(d2*d2)
mu2[1,2,]=-(Fcp1p1-Fcm1p1-Fcp1m1+Fcm1m1)/(4*d1*d2)
# copy
mu2[2,1,]=mu2[1,2,]
return(mu2)
}
#' MLE and RHP predictive means
#' @inherit manmeans return
#' @inheritParams manf
lnorm_dmgs_means=function(means,ml_params,lddi,lddd,lambdad_rhp,nx,dim=2){
if(means){
# intro
v1=ml_params[1]
v2=ml_params[2]
# ml mean
ml_mean=exp(v1+0.5*v2*v2)
# rhp mean
meand1=array(0,c(2,1))
meand1[1,1]=ml_mean
meand1[2,1]=v2*ml_mean
meand2=array(0,c(2,2,1)) #but all zero for lnorm_dmgs
meand2[1,1,1]=ml_mean
meand2[1,2,1]=v2*ml_mean
meand2[2,1,1]=meand2[1,2,1]
meand2[2,2,1]=v2*v2*ml_mean
dmean=dmgs(lddi,lddd,meand1,lambdad_rhp,meand2,dim=2)
rh_mean=ml_mean+dmean/nx
}else{
ml_mean="means not selected"
rh_mean="means not selected"
}
list(ml_mean=ml_mean,rh_mean=rh_mean)
}
#' Log scores for MLE and RHP predictions calculated using leave-one-out
#' @inherit manlogscores return
#' @inheritParams manf
lnorm_dmgs_logscores=function(logscores,x,d1=0.01,fd2=0.01){
if(logscores){
nx=length(x)
ml_oos_logscore=0
rh_oos_logscore=0
for (i in 1:nx){
x1=x[-i]
dd=dlnorm_dmgssub(x1,x[i],d1,fd2)
ml_params=dd$ml_params
ml_pdf=dd$ml_pdf
ml_oos_logscore=ml_oos_logscore+log(ml_pdf)
rh_pdf=dd$rh_pdf
rh_oos_logscore=rh_oos_logscore+log(max(rh_pdf,.Machine$double.eps))
}
}else{
ml_oos_logscore="logscores not selected"
rh_oos_logscore="logscores not selected"
}
list(ml_oos_logscore=ml_oos_logscore,rh_oos_logscore=rh_oos_logscore)
}
#' Densities from MLE and RHP
#' @inherit mandsub return
#' @inheritParams manf
dlnorm_dmgssub=function(x,y,d1=0.01,fd2=0.01,aderivs=TRUE){
nx=length(x)
v1start=mean(x)
v2start=sd(x)
opt=optim(c(v1start,v2start),lnorm_dmgs_loglik,x=x,control=list(fnscale=-1))
v1hat=opt$par[1]
v2hat=opt$par[2]
ml_params=c(v1hat,v2hat)
# mle
ml_pdf=dlnorm(y,meanlog=v1hat,sdlog=v2hat)
ml_cdf=plnorm(y,meanlog=v1hat,sdlog=v2hat)
# rhp
if(aderivs) ldd=lnorm_ldda(x,v1hat,v2hat)
if(!aderivs)ldd=lnorm_ldd(x,v1hat,d1,v2hat,fd2)
lddi=solve(ldd)
if(aderivs) lddd=lnorm_lddda(x,v1hat,v2hat)
if(!aderivs)lddd=lnorm_lddd(x,v1hat,d1,v2hat,fd2)
if(aderivs) f1=lnorm_f1fa(y,v1hat,v2hat)
if(!aderivs)f1=lnorm_f1f(y,v1hat,d1,v2hat,fd2)
if(aderivs) f2=lnorm_f2fa(y,v1hat,v2hat)
if(!aderivs)f2=lnorm_f2f(y,v1hat,d1,v2hat,fd2)
if(aderivs) p1=lnorm_p1fa(y,v1hat,v2hat)
if(!aderivs)p1=lnorm_dmgs_p1f(y,v1hat,d1,v2hat,fd2)
if(aderivs) p2=lnorm_p2fa(y,v1hat,v2hat)
if(!aderivs)p2=lnorm_dmgs_p2f(y,v1hat,d1,v2hat,fd2)
lambdad_rhp=c(0,-1/v2hat)
df1=dmgs(lddi,lddd,f1,lambdad_rhp,f2,dim=2)
dp1=dmgs(lddi,lddd,p1,lambdad_rhp,p2,dim=2)
rh_pdf=pmax(ml_pdf+df1/nx,0)
rh_cdf=pmin(pmax(ml_cdf+dp1/nx,0),1)
# return
list( ml_params=ml_params,
ml_pdf=ml_pdf,
rh_pdf=rh_pdf,
ml_cdf=ml_cdf,
rh_cdf=rh_cdf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.