Nothing
#' Linear regression formula, densities
#' @inherit manvector return
#' @inheritParams manf
pnorm_p1_formula=function(y,ta,ta0,nx,muhat0,v3hat){
top=ta0*ta0
sx=sum(ta*ta)
# convert maxlik sg to sum^2/(n-2), which is used in the standard formula
# noting that maxlik is equivalent to using 1/(n-1)
sg1=v3hat*sqrt((nx-1)/(nx-2))
sg2=sg1*sqrt((1+1/nx+top/sx))
yd=(y-muhat0)/sg2
rh_cdf=(pt(yd,df=nx-2))
return(rh_cdf)
}
#' Linear regression formula, densities
#' @inherit manvector return
#' @inheritParams manf
dnorm_p1_formula=function(y,ta,ta0,nx,muhat0,v3hat){
top=ta0*ta0
sx=sum(ta*ta)
# convert maxlik sg to sum^2/(n-2), which is used in the standard formula
sg1=v3hat*sqrt((nx-1)/(nx-2))
sg2=sg1*sqrt((1+1/nx+top/sx))
yd=(y-muhat0)/sg2
rh_pdf=(dt(yd,df=nx-2))/sg2
return(rh_pdf)
}
#' Linear regression formula, quantiles
#' @inherit manvector return
#' @inheritParams manf
qnorm_p1_formula=function(alpha,ta,ta0,nx,muhat0,v3hat){
top=ta0*ta0
sx=sum(ta*ta)
# convert maxlik sg to sum^2/(n-2), which is used in the standard formula
sg1=v3hat*sqrt((nx-1)/(nx-2))
sg2=sg1*sqrt((1+1/nx+top/sx))
temp=qt((1-alpha),df=nx-2)
rh_quantiles=muhat0+temp*sg2
return(rh_quantiles)
}
#' Waic
#' @inherit manwaic return
#' @inheritParams manf
norm_p1_waic=function(waicscores,x,t,v1hat,d1,v2hat,d2,v3hat,fd3,aderivs=TRUE){
if(waicscores){
f1f=norm_p1_f1f(x,t,v1hat,d1,v2hat,d2,v3hat,fd3)
f2f=norm_p1_f2f(x,t,v1hat,d1,v2hat,d2,v3hat,fd3)
if(aderivs) ldd=norm_p1_ldda(x,t,v1hat,v2hat,v3hat)
if(!aderivs)ldd=norm_p1_ldd(x,t,v1hat,d1,v2hat,d2,v3hat,fd3)
lddi=solve(ldd)
if(aderivs) lddd=norm_p1_lddda(x,t,v1hat,v2hat,v3hat)
if(!aderivs)lddd=norm_p1_lddd(x,t,v1hat,d1,v2hat,d2,v3hat,fd3)
fhatx=dnorm_p1(x,t,ymn=v1hat,slope=v2hat,sigma=v3hat,log=FALSE)
lambdad_rhp=c(0,0,-1/v3hat)
waic=make_waic(x,fhatx,lddi,lddd,f1f,lambdad_rhp,f2f,dim=3)
waic1=waic$waic1
waic2=waic$waic2
}else{
waic1="extras not selected"
waic2="extras not selected"
}
list(waic1=waic1,waic2=waic2)
}
#' Predicted Parameter and Generalized Residuals
#' @inherit manpredictor return
#' @inheritParams manf
norm_p1_predictordata=function(x,t,t0,params){
#
# calculate the probabilities of the data using the fited model
#
# note that t may be centred
# -but the params take that into account
# -so the mu is not affected by centering
a=params[1]
b=params[2]
s=params[3]
mu=a+b*t
px=pnorm(x,mean=mu,sd=s)
#
# calculate the quantiles for those probabilities at t0
#
mu0=a+b*t0
qx=qnorm(px,mean=mu0,sd=s)
list(predictedparameter=mu,adjustedx=qx)
}
#' Logf for RUST
#' @inherit manlogf return
#' @inheritParams manf
norm_p1_logf=function(params,x,t){
a=params[1]
b=params[2]
s=pmax(params[3],.Machine$double.eps)
mu=a+b*t
logf=sum(dnorm(x,mean=mu,sd=s,log=TRUE))
return(logf)
}
#' Normal-with-p1 observed log-likelihood function
#' @inherit manloglik return
#' @inheritParams manf
norm_p1_loglik=function(vv,x,t){
n=length(x)
mean=vv[1]+vv[2]*t #so mean is a vector, just like x
loglik=sum(dnorm(x,mean=mean,sd=max(vv[3],0),log=TRUE))
return(loglik)
}
#' Maximum likelihood estimator
#' @inherit manvector return
#' @inheritParams manf
norm_p1_mlparams=function(x,t){
mlparams=matrix(0,3)
reg=lm(x~t)
mlparams[1]=reg$coefficients[1]
mlparams[2]=reg$coefficients[2]
mlparams[3]=sd(reg$residuals)
return(mlparams)
}
#' Normal-with-p1 quantile function
#' @inherit manvector return
#' @inheritParams manf
qnorm_p1=function(p,t0,ymn,slope,sigma){
return(qnorm(p,mean=(ymn+slope*t0),sd=sigma))
}
#' Normal-with-p1 density function
#' @inherit manvector return
#' @inheritParams manf
dnorm_p1=function(x,t0,ymn,slope,sigma,log=FALSE){
return(dnorm(x,mean=(ymn+slope*t0),sd=sigma,log=log))
}
#' Normal-with-p1 distribution function
#' @inherit manvector return
#' @inheritParams manf
pnorm_p1=function(x,t0,ymn,slope,sigma){
return(pnorm(x,mean=(ymn+slope*t0),sd=sigma))
}
#' One component of the second derivative of the normalized log-likelihood
#' @inherit manlnn return
#' @inheritParams manf
norm_p1_lmn=function(x,t,v1,d1,v2,d2,v3,fd3,mm,nn){
d3=fd3*v3
net3=matrix(0,3,3)
net4=matrix(0,4,3)
lmn=matrix(0,4)
dd=c(d1,d2,d3)
vv=c(v1,v2,v3)
vvd=matrix(0,3)
nx=length(x)
# different
if(mm!=nn){
net4[,mm]=c(-1,-1,1,1)
net4[,nn]=c(-1,1,-1,1)
for (i in 1:4){
for (j in 1:3){
vvd[j]=vv[j]+net4[i,j]*dd[j]
}
lmn[i]=sum(dnorm_p1(x,t,ymn=vvd[1],slope=vvd[2],sigma=vvd[3],log=TRUE))/nx
}
dld=(lmn[1]-lmn[2]-lmn[3]+lmn[4])/(4*dd[mm]*dd[nn])
# same
} else {
net3[,mm]=c(-1,0,1)
for (i in 1:3){
for (j in 1:3){
vvd[j]=vv[j]+net3[i,j]*dd[j]
}
lmn[i]=sum(dnorm_p1(x,t,ymn=vvd[1],slope=vvd[2],sigma=vvd[3],log=TRUE))/nx
}
dld=(lmn[1]-2*lmn[2]+lmn[3])/(dd[mm]*dd[mm])
}
return(dld)
}
#' Second derivative matrix of the normalized log-likelihood
#' @inherit manldd return
#' @inheritParams manf
norm_p1_ldd=function(x,t,v1,d1,v2,d2,v3,fd3){
nx=length(x)
ldd=matrix(0,3,3)
for (i in 1:3){
for (j in i:3){
ldd[i,j]=norm_p1_lmn(x,t,v1,d1,v2,d2,v3,fd3,i,j)
}
}
for (i in 3:2){
for (j in 1:(i-1)){
ldd[i,j]=ldd[j,i]
}
}
return(ldd)
}
#' One component of the second derivative of the normalized log-likelihood
#' @inherit manlnnn return
#' @inheritParams manf
norm_p1_lmnp=function(x,t,v1,d1,v2,d2,v3,fd3,mm,nn,rr){
d3=fd3*v3
net4=matrix(0,4,3)
net6=matrix(0,6,3)
net8=matrix(0,8,3)
lmn=matrix(0,8)
dd=c(d1,d2,d3)
vv=c(v1,v2,v3)
vvd=matrix(0,3)
nx=length(x)
# all diff
if ((mm!=nn)&(nn!=rr)&(rr!=mm)){
net8[,mm]=c(-1,1,-1,1,-1,1,-1,1)
net8[,nn]=c(-1,-1,1,1,-1,-1,1,1)
net8[,rr]=c(-1,-1,-1,-1,1,1,1,1)
for (i in 1:8){
for (j in 1:3){
vvd[j]=vv[j]+net8[i,j]*dd[j]
}
lmn[i]=sum(dnorm_p1(x,t,ymn=vvd[1],slope=vvd[2],sigma=vvd[3],log=TRUE))/nx
}
dld1=(lmn[2]-lmn[1])/(2*dd[mm])
dld2=(lmn[4]-lmn[3])/(2*dd[mm])
dld21=(dld2-dld1)/(2*dd[nn])
dld3=(lmn[6]-lmn[5])/(2*dd[mm])
dld4=(lmn[8]-lmn[7])/(2*dd[mm])
dld43=(dld4-dld3)/(2*dd[nn])
dld=(dld43-dld21)/(2*dd[rr])
# all 3 the same
} else if ((mm==nn)&(nn==rr)){
net4[,mm]=c(-2,-1,1,2)
for (i in 1:4){
for (j in 1:3){
vvd[j]=vv[j]+net4[i,j]*dd[j]
}
lmn[i]=sum(dnorm_p1(x,t,ymn=vvd[1],slope=vvd[2],sigma=vvd[3],log=TRUE))/nx
}
dld=(-lmn[1]+2*lmn[2]-2*lmn[3]+lmn[4])/(2*dd[mm]*dd[mm]*dd[mm])
} else {
# 2 the same
# mm is the repeated one, nn is the other one
if(mm==nn){m2=mm;n2=rr}
if(mm==rr){m2=mm;n2=nn}
if(nn==rr){m2=nn;n2=mm}
net6[,m2]=c(-1,0,1,-1,0,1)
net6[,n2]=c(-1,-1,-1,1,1,1)
for (i in 1:6){
for (j in 1:3){
vvd[j]=vv[j]+net6[i,j]*dd[j]
}
lmn[i]=sum(dnorm_p1(x,t,ymn=vvd[1],slope=vvd[2],sigma=vvd[3],log=TRUE))/nx
}
dld1=(lmn[3]-2*lmn[2]+lmn[1])/(dd[m2]*dd[m2])
dld2=(lmn[6]-2*lmn[5]+lmn[4])/(dd[m2]*dd[m2])
dld=(dld2-dld1)/(2*dd[n2])
}
return(dld)
}
#' Third derivative tensor of the normalized log-likelihood
#' @inherit manlddd return
#' @inheritParams manf
norm_p1_lddd=function(x,t,v1,d1,v2,d2,v3,fd3){
# calculate the unique values
lddd=array(0,c(3,3,3))
for (i in 1:3){
for (j in i:3){
for (k in j:3){
lddd[i,j,k]=norm_p1_lmnp(x,t,v1,d1,v2,d2,v3,fd3,i,j,k)
}
}
}
# steves dumb algorithm for filling in the non-unique values
for (i in 1:3){
for (j in 1:3){
for (k in 1:3){
a=c(i,j,k)
b=sort(a)
lddd[a[1],a[2],a[3]]=lddd[b[1],b[2],b[3]]
}
}
}
return(lddd)
}
#' DMGS equation 2.1, f1 term
#' @inherit man1f return
#' @inheritParams manf
norm_p1_f1f=function(y,t0,v1,d1,v2,d2,v3,fd3){
d3=fd3*v3
# v1 stuff
v1m1=v1-1*d1
v100=v1+0*d1
v1p1=v1+1*d1
# v2 stuff
v2m1=v2-1*d2
v200=v2+0*d2
v2p1=v2+1*d2
# v3 stuff
v3m1=v3-1*d3
v300=v3+0*d3
v3p1=v3+1*d3
# v1 derivatives
F1m1=dnorm_p1(y,t0,ymn=v1m1,slope=v200,sigma=v3)
F1p1=dnorm_p1(y,t0,ymn=v1p1,slope=v200,sigma=v3)
# v2 derivatives
F2m1=dnorm_p1(y,t0,ymn=v100,slope=v2m1,sigma=v3)
F2p1=dnorm_p1(y,t0,ymn=v100,slope=v2p1,sigma=v3)
# v3 derivatives
F3m1=dnorm_p1(y,t0,ymn=v100,slope=v200,sigma=v3m1)
F3p1=dnorm_p1(y,t0,ymn=v100,slope=v200,sigma=v3p1)
f1=matrix(0,3,length(y))
f1[1,]=(F1p1-F1m1)/(2*d1)
f1[2,]=(F2p1-F2m1)/(2*d2)
f1[3,]=(F3p1-F3m1)/(2*d3)
return(f1)
}
#' DMGS equation 2.1, f2 term
#' @inherit man2f return
#' @inheritParams manf
norm_p1_f2f=function(y,t0,v1,d1,v2,d2,v3,fd3){
d3=fd3*v3
# new method
dd=c(d1,d2,d3)
vv=c(v1,v2,v3)
f2=array(0,c(3,3,length(y)))
for (i in 1:3){
for (j in 1:3){
if(i==j){
vvm=vv
vv0=vv
vvp=vv
vvm[i]=vv[i]-dd[i]
vvp[i]=vv[i]+dd[i]
Fm1=dnorm_p1(y,t0,ymn=vvm[1],slope=vvm[2],sigma=vvm[3])
F00=dnorm_p1(y,t0,ymn=vv0[1],slope=vv0[2],sigma=vv0[3])
Fp1=dnorm_p1(y,t0,ymn=vvp[1],slope=vvp[2],sigma=vvp[3])
f2[i,i,]=(Fp1-2*F00+Fm1)/(dd[i]*dd[i])
} else if(i<j) {
vvmm=vv
vvmp=vv
vvpm=vv
vvpp=vv
vvmm[i]=vv[i]-dd[i];vvmm[j]=vv[j]-dd[j]
vvmp[i]=vv[i]-dd[i];vvmp[j]=vv[j]+dd[j]
vvpm[i]=vv[i]+dd[i];vvpm[j]=vv[j]-dd[j]
vvpp[i]=vv[i]+dd[i];vvpp[j]=vv[j]+dd[j]
Fm1m1=dnorm_p1(y,t0,ymn=vvmm[1],slope=vvmm[2],sigma=vvmm[3])
Fm1p1=dnorm_p1(y,t0,ymn=vvmp[1],slope=vvmp[2],sigma=vvmp[3])
Fp1m1=dnorm_p1(y,t0,ymn=vvpm[1],slope=vvpm[2],sigma=vvpm[3])
Fp1p1=dnorm_p1(y,t0,ymn=vvpp[1],slope=vvpp[2],sigma=vvpp[3])
f2[i,j,]=(Fp1p1-Fm1p1-Fp1m1+Fm1m1)/(4*dd[i]*dd[j])
f2[j,i,]=f2[i,j,]
}
}
}
return(f2)
}
#' Log scores for MLE and RHP predictions calculated using leave-one-out
#' @inherit manlogscores return
#' @inheritParams manf
norm_p1_logscores=function(logscores,x,t,aderivs=TRUE){
if(logscores){
nx=length(x)
ml_oos_logscore=0
rh_oos_logscore=0
for (i in 1:nx){
x1=x[-i]
t1=t[-i]
dd=dnorm_p1sub(x1,t1,x[i],t[i],aderivs)
ml_pdf=dd$ml_pdf
ml_oos_logscore=ml_oos_logscore+log(ml_pdf)
rh_pdf=dd$rh_pdf
rh_oos_logscore=rh_oos_logscore+log(rh_pdf)
}
}else{
ml_oos_logscore="extras not selected"
rh_oos_logscore="extras not selected"
}
list(ml_oos_logscore=ml_oos_logscore,rh_oos_logscore=rh_oos_logscore)
}
#' Densities from MLE and RHP
#' @inherit mandsub return
#' @inheritParams manf
dnorm_p1sub=function(x,t,y,t0,aderivs=TRUE){
nx=length(x)
meant=mean(t)
ta=t-meant
ta0=t0-meant
# we have to centre this here again because this is used in a cross-validation loop
# note that t0 should never be centred
ml_params=norm_p1_mlparams(x,t)
v1hat=ml_params[1]
v2hat=ml_params[2]
v3hat=ml_params[3]
muhat0=v1hat+v2hat*t0
# ml
ml_pdf=dnorm(y,mean=muhat0,sd=v3hat)
ml_cdf=pnorm(y,mean=muhat0,sd=v3hat)
# rhp
rh_pdf=dnorm_p1_formula(y,ta,ta0,nx,muhat0,v3hat)
rh_pdf=pmax(rh_pdf,0)
rh_cdf=pnorm_p1_formula(y,ta,ta0,nx,muhat0,v3hat)
rh_cdf=pmin(pmax(rh_cdf,0),1)
# return
list( ml_params=ml_params,
ml_pdf=ml_pdf,
rh_pdf=rh_pdf,
ml_cdf=ml_cdf,
rh_cdf=rh_cdf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.