Nothing
#' A Reference Class which represents a fitted Mixture of HMM model.
#'
#' ModelMixHMM represents an estimated mixture of HMM model.
#'
#' @field param A [ParamMixHMM][ParamMixHMM] object. It contains the estimated
#' values of the parameters.
#' @field stat A [StatMixHMM][StatMixHMM] object. It contains all the statistics
#' associated to the MixHMM model.
#' @seealso [ParamMixHMM], [StatMixHMM]
#' @export
#'
#' @examples
#' data(toydataset)
#' Y <- t(toydataset[,2:ncol(toydataset)])
#'
#' mixhmm <- emMixHMM(Y = Y, K = 3, R = 3, verbose = TRUE)
#'
#' # mixhmm is a ModelMixHMM object. It contains some methods such as 'summary' and 'plot'
#' mixhmm$summary()
#' mixhmm$plot()
#'
#' # mixhmm has also two fields, stat and param which are reference classes as well
#'
#' # Log-likelihood:
#' mixhmm$stat$loglik
#'
#' # Means
#' mixhmm$param$mu
ModelMixHMM <- setRefClass(
"ModelMixHMM",
fields = list(
param = "ParamMixHMM",
stat = "StatMixHMM"
),
methods = list(
plot = function(what = c("clustered", "smoothed", "loglikelihood"), ...) {
"Plot method
\\describe{
\\item{\\code{what}}{The type of graph requested:
\\itemize{
\\item \\code{\"clustered\" = } Clustered curves (field
\\code{klas} of class \\link{StatMixHMM}).
\\item \\code{\"smoothed\" = } Smoothed signal (field
\\code{smoothed} of class {StatMixHMM}).
\\item \\code{\"loglikelihood\" = } Value of the log-likelihood for
each iteration (field \\code{stored_loglik} of class
\\link{StatMixHMM}).
}
}
\\item{\\code{\\dots}}{Other graphics parameters.}
}"
what <- match.arg(what, several.ok = TRUE)
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar), add = TRUE)
# yaxislim <- c(min(param$fData$Y) - 2 * mean(sqrt(apply(param$fData$Y, 1, var))), max(param$fData$Y) + 2 * mean(sqrt(apply(param$fData$Y, 1, var))))
colorsvec <- rainbow(param$K)
if (any(what == "clustered")) {
par(mfrow = c(1, 1))
matplot(param$fData$X, t(param$fData$Y), type = "l", lty = "dotted", col = colorsvec[stat$klas], xlab = "x", ylab = "y", ...)
legend("bottomright", legend = sapply(1:param$K, function(x) paste0("Cluster ", x)), col = colorsvec, lty = "dotted", cex = 0.8)
title(main = "Clustered curves")
}
if (any(what == "smoothed")) {
nonemptyclusters = length(unique(stat$klas))
par(mfrow = c(ceiling(sqrt(nonemptyclusters + 1)), round(sqrt(nonemptyclusters + 1))), mai = c(0.6, 0.6, 0.5, 0.25), mgp = c(2, 1, 0))
matplot(param$fData$X, t(param$fData$Y), type = "l", lty = "solid", col = "black", xlab = "x", ylab = "y", ...)
title(main = "Original dataset")
for (k in 1:param$K) {
if (sum(stat$klas == k) >= 1) {# At least one curve belongs to cluster k
if (sum(stat$klas == k) == 1) {# Only one curve in cluster k
matplot(param$fData$X, param$fData$Y[stat$klas == k,], type = "l", lty = "dotted", col = colorsvec[k], xlab = "x", ylab = "y", ...)
} else {
matplot(param$fData$X, t(param$fData$Y[stat$klas == k,]), type = "l", lty = "dotted", col = colorsvec[k], xlab = "x", ylab = "y", ...)
}
title(main = sprintf("Cluster %1.1i", k))
lines(param$fData$X, stat$smoothed[, k], lwd = 1.5, ...)
}
}
}
if (any(what == "loglikelihood")) {
par(mfrow = c(1, 1))
plot.default(1:length(stat$stored_loglik), stat$stored_loglik, type = "l", col = "blue", xlab = "EM iteration number", ylab = "Log-likelihood", ...)
title(main = "Log-likelihood")
}
},
summary = function(digits = getOption("digits")) {
"Summary method.
\\describe{
\\item{\\code{digits}}{The number of significant digits to use when
printing.}
}"
title <- paste("Fitted mixHMM model")
txt <- paste(rep("-", min(nchar(title) + 4, getOption("width"))), collapse = "")
# Title
cat(txt)
cat("\n")
cat(title)
cat("\n")
cat(txt)
cat("\n")
cat("\n")
cat(paste0("MixHMM model with K = ", param$K,ifelse(param$K > 1, " clusters", " cluster"), " and R = ", param$R, ifelse(param$R > 1, " regimes", " regime"), ":"))
cat("\n")
cat("\n")
tab <- data.frame("log-likelihood" = stat$loglik, "nu" = param$nu,
"AIC" = stat$AIC, "BIC" = stat$BIC,
row.names = "", check.names = FALSE)
print(tab, digits = digits)
cat("\nClustering table (Number of curves in each clusters):\n")
print(table(stat$klas))
cat("\nMixing probabilities (cluster weights):\n")
pro <- data.frame(t(param$alpha))
colnames(pro) <- 1:param$K
print(pro, digits = digits, row.names = FALSE)
cat("\n\n")
txt <- paste(rep("-", min(nchar(title), getOption("width"))), collapse = "")
for (k in 1:param$K) {
cat(txt)
cat("\nCluster ", k, " (k = ", k, "):\n", sep = "")
cat("\nMeans:\n\n")
means <- data.frame(t(param$mu[, k]))
colnames(means) <- sapply(1:param$R, function(x) paste0("r = ", x))
print(means, digits = digits, row.names = FALSE)
if (param$variance_type == "homoskedastic") {
sigma2 <- data.frame(param$sigma2[k])
colnames(sigma2) <- "Sigma2"
cat(paste0("\nVariance:\n\n"))
print(sigma2, digits = digits, row.names = FALSE)
} else {
sigma2 <- data.frame(t(param$sigma2[, k]))
colnames(sigma2) <- sapply(1:param$R, function(x) paste0("Sigma2(r = ", x, ")"))
cat(paste0("\nVariances:\n\n"))
print(sigma2, digits = digits, row.names = FALSE)
}
cat("\n")
}
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.