Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(flevr)
## ----install, eval = FALSE----------------------------------------------------
# # install devtools if you haven't already
# # install.packages("devtools", repos = "https://cloud.r-project.org")
# devtools::install_github(repo = "bdwilliamson/flevr")
## ----gen-data-----------------------------------------------------------------
# generate the data -- note that this is a simple setting, for speed
set.seed(4747)
p <- 2
n <- 500
# generate features
x <- replicate(p, stats::rnorm(n, 0, 1))
x_df <- as.data.frame(x)
x_names <- names(x_df)
# generate outcomes
y <- 1 + 0.5 * x[, 1] + 0.75 * x[, 2] + stats::rnorm(n, 0, 1)
## ----sl-fit-and-imp-----------------------------------------------------------
set.seed(1234)
# fit a Super Learner ensemble; note its simplicity, for speed
library("SuperLearner")
learners <- c("SL.glm", "SL.mean")
V <- 2
fit <- SuperLearner::SuperLearner(Y = y, X = x_df,
SL.library = learners,
cvControl = list(V = V))
# extract importance based on the whole Super Learner
sl_importance_all <- extract_importance_SL(
fit = fit, feature_names = x_names, import_type = "all"
)
sl_importance_all
## ----sl-best-alg--------------------------------------------------------------
sl_importance_best <- extract_importance_SL(
fit = fit, feature_names = x_names, import_type = "best"
)
sl_importance_best
## ----extrinsic-selection------------------------------------------------------
extrinsic_selected <- extrinsic_selection(
fit = fit, feature_names = x_names, threshold = 1.5, import_type = "all"
)
extrinsic_selected
## ----fit-spvim----------------------------------------------------------------
set.seed(1234)
# set up a library for SuperLearner
learners <- "SL.glm"
univariate_learners <- "SL.glm"
V <- 2
# estimate the SPVIMs
library("vimp")
est <- suppressWarnings(
sp_vim(Y = y, X = x, V = V, type = "r_squared",
SL.library = learners, gamma = .1, alpha = 0.05, delta = 0,
cvControl = list(V = V), env = environment())
)
est
## ----intrinsic-selection------------------------------------------------------
intrinsic_set <- intrinsic_selection(
spvim_ests = est, sample_size = n, alpha = 0.2, feature_names = x_names,
control = list( quantity = "gFWER", base_method = "Holm", k = 1)
)
intrinsic_set
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.