R/vis.gam.msm.R

# Note: this function is an adaptation of the vis.gam() function from the R package mgcv

vis.gam.msm  = function (x, view = NULL, cond = list(), n.grid = 30, too.far = 0,
                          col = NA, color = "heat", contour.col = NULL, se = -1, type = "link",
                          plot.type = "persp", zlim = NULL, nCol = 50,
                          s1 = s1, s2 = s2, ...)
{
  oldpar <- par(no.readonly = TRUE)    # code line i
  on.exit(par(oldpar))

  fac.seq <- function(fac, n.grid) {
    fn <- length(levels(fac))
    gn <- n.grid
    if (fn > gn)
      mf <- factor(levels(fac))[1:gn]
    else {
      ln <- floor(gn/fn)
      mf <- rep(levels(fac)[fn], gn)
      mf[1:(ln * fn)] <- rep(levels(fac), rep(ln, fn))
      mf <- factor(mf, levels = levels(fac))
    }
    mf
  }
  dnm <- names(list(...))
  v.names <- names(x$var.summary)
  if (is.null(view)) {
    k <- 0
    view <- rep("", 2)
    for (i in 1:length(v.names)) {
      ok <- TRUE
      if (is.matrix(x$var.summary[[i]]))
        ok <- FALSE
      else if (is.factor(x$var.summary[[i]])) {
        if (length(levels(x$var.summary[[i]])) <= 1)
          ok <- FALSE
      }
      else {
        if (length(unique(x$var.summary[[i]])) == 1)
          ok <- FALSE
      }
      if (ok) {
        k <- k + 1
        view[k] <- v.names[i]
      }
      if (k == 2)
        break
    }
    if (k < 2)
      stop("Model does not seem to have enough terms to do anything useful")
  }
  else {
    if (sum(view %in% v.names) != 2)
      stop(gettextf("view variables must be one of %s",
                    paste(v.names, collapse = ", ")))
    for (i in 1:2) if (!inherits(x$var.summary[[view[i]]],
                                 c("numeric", "factor")))
      stop("Don't know what to do with parametric terms that are not simple numeric or factor variables")
  }
  ok <- TRUE
  for (i in 1:2) if (is.factor(x$var.summary[[view[i]]])) {
    if (length(levels(x$var.summary[[view[i]]])) <= 1)
      ok <- FALSE
  }
  else {
    if (length(unique(x$var.summary[[view[i]]])) <= 1)
      ok <- FALSE
  }
  if (!ok)
    stop(gettextf("View variables must contain more than one value. view = c(%s,%s).",
                  view[1], view[2]))
  if (is.factor(x$var.summary[[view[1]]]))
    m1 <- fac.seq(x$var.summary[[view[1]]], n.grid)
  else {
    r1 <- range(x$var.summary[[view[1]]])
    m1 <- seq(r1[1], r1[2], length = n.grid)
  }
  if (is.factor(x$var.summary[[view[2]]]))
    m2 <- fac.seq(x$var.summary[[view[2]]], n.grid)
  else {
    r2 <- range(x$var.summary[[view[2]]])
    m2 <- seq(r2[1], r2[2], length = n.grid)
  }
  v1 <- rep(m1, n.grid)
  v2 <- rep(m2, rep(n.grid, n.grid))
  newd <- data.frame(matrix(0, n.grid * n.grid, 0))
  for (i in 1:length(x$var.summary)) {
    ma <- cond[[v.names[i]]]
    if (is.null(ma)) {
      ma <- x$var.summary[[i]]
      if (is.numeric(ma))
        ma <- ma[2]
    }
    if (is.matrix(x$var.summary[[i]]))
      newd[[i]] <- matrix(ma, n.grid * n.grid, ncol(x$var.summary[[i]]),
                          byrow = TRUE)
    else newd[[i]] <- rep(ma, n.grid * n.grid)
  }
  names(newd) <- v.names
  newd[[view[1]]] <- v1
  newd[[view[2]]] <- v2
  if (type == "link")
    zlab <- paste('\n\n\n', s1, 'to', s2, "transition intensity") # OUR CHANGE IS HERE TOO
  else if (type == "response")
    zlab <- type
  else stop("type must be \"link\" or \"response\"")
  fv <- predict.gam(x, newdata = newd, se.fit = TRUE, type = type)
  z <- fv$fit
  z = exp(z) # HERE
  if (too.far > 0) {
    ex.tf <- exclude.too.far(v1, v2, x$model[, view[1]],
                             x$model[, view[2]], dist = too.far)
    fv$se.fit[ex.tf] <- fv$fit[ex.tf] <- NA
  }
  if (is.factor(m1)) {
    m1 <- as.numeric(m1)
    m1 <- seq(min(m1) - 0.5, max(m1) + 0.5, length = n.grid)
  }
  if (is.factor(m2)) {
    m2 <- as.numeric(m2)
    m2 <- seq(min(m1) - 0.5, max(m2) + 0.5, length = n.grid)
  }
  if (se <= 0) {
    # old.warn <- options(warn = -1)
    av <- matrix(c(0.5, 0.5, rep(0, n.grid - 1)), n.grid,
                 n.grid - 1)
    # options(old.warn)
    max.z <- max(z, na.rm = TRUE)
    z[is.na(z)] <- max.z * 10000
    z <- matrix(z, n.grid, n.grid)

    # THIS IS OUR ADDITION ####
    z = exp(z)
    # ***********************

    surf.col <- t(av) %*% z %*% av
    surf.col[surf.col > max.z * 2] <- NA
    if (!is.null(zlim)) {
      if (length(zlim) != 2 || zlim[1] >= zlim[2])
        stop("Something wrong with zlim")
      min.z <- zlim[1]
      max.z <- zlim[2]
    }
    else {
      min.z <- min(exp(fv$fit), na.rm = TRUE)
      max.z <- max(exp(fv$fit), na.rm = TRUE)
    }
    surf.col <- surf.col - min.z
    surf.col <- surf.col/(max.z - min.z)
    surf.col <- round(surf.col * nCol)
    con.col <- 1
    if (color == "heat") {
      pal <- heat.colors(nCol)
      con.col <- 4
    }
    else if (color == "topo") {
      pal <- topo.colors(nCol)
      con.col <- 2
    }
    else if (color == "cm") {
      pal <- cm.colors(nCol)
      con.col <- 1
    }
    else if (color == "terrain") {
      pal <- terrain.colors(nCol)
      con.col <- 2
    }
    else if (color == "gray" || color == "bw") {
      pal <- gray(seq(0.1, 0.9, length = nCol))
      con.col <- 1
    }
    else stop("color scheme not recognised")
    if (is.null(contour.col))
      contour.col <- con.col
    surf.col[surf.col < 1] <- 1
    surf.col[surf.col > nCol] <- nCol
    if (is.na(col))
      col <- pal[as.array(surf.col)]
    z <- matrix(fv$fit, n.grid, n.grid)
    z = exp(z) # HERE
    if (plot.type == "contour") {
      stub <- paste(ifelse("xlab" %in% dnm, "", ",xlab=view[1]"),
                    ifelse("ylab" %in% dnm, "", ",ylab=view[2]"),
                    ifelse("main" %in% dnm, "", ",main=zlab"), ",...)",
                    sep = "")
      if (color != "bw") {
        txt <- paste("image(m1,m2,z,col=pal,zlim=c(min.z,max.z)",
                     stub, sep = "")
        eval(parse(text = txt))
        txt <- paste("contour(m1,m2,z,col=contour.col,zlim=c(min.z,max.z)",
                     ifelse("add" %in% dnm, "", ",add=TRUE"), ",...)",
                     sep = "")
        eval(parse(text = txt))
      }
      else {
        txt <- paste("contour(m1,m2,z,col=1,zlim=c(min.z,max.z)",
                     stub, sep = "")
        eval(parse(text = txt))
      }
    }
    else {
      stub <- paste(ifelse("xlab" %in% dnm, "", ",xlab=view[1]"),
                    ifelse("ylab" %in% dnm, "", ",ylab=view[2]"),
                    ifelse("zlab" %in% dnm, "", ",zlab=zlab"), ",...)",
                    sep = "")
      if (color == "bw") {
        op <- par(bg = "white")
        txt <- paste("persp(m1,m2,z,col=\"white\",zlim=c(min.z,max.z) ",
                     stub, sep = "")
        eval(parse(text = txt))
        par(op)
      }
      else {
        txt <- paste("persp(m1,m2,z,col=col,zlim=c(min.z,max.z)",
                     stub, sep = "")
        eval(parse(text = txt))
      }
    }
  }
  else {
    if (color == "bw" || color == "gray") {
      subs <- paste("grey are +/-", se, "s.e.")
      lo.col <- "gray"
      hi.col <- "gray"
    }
    else {
      subs <- paste("red/green are +/-", se, "s.e.")
      lo.col <- "green"
      hi.col <- "red"
    }
    if (!is.null(zlim)) {
      if (length(zlim) != 2 || zlim[1] >= zlim[2])
        stop("Something wrong with zlim")
      min.z <- zlim[1]
      max.z <- zlim[2]
    }
    else {
      max.z <- max(exp(fv$fit + fv$se.fit * se), na.rm = TRUE) # HERE
      min.z <- min(exp(fv$fit - fv$se.fit * se), na.rm = TRUE) # HERE
      zlim <- c(min.z, max.z)
    }
    z <- exp(fv$fit - fv$se.fit * se) # HERE
    z <- matrix(z, n.grid, n.grid)

    if (plot.type == "contour")
      warning("sorry no option for contouring with errors: try plot.gam")
    stub <- paste(ifelse("xlab" %in% dnm, "", ",xlab=view[1]"),
                  ifelse("ylab" %in% dnm, "", ",ylab=view[2]"), ifelse("zlab" %in%
                                                                         dnm, "", ",zlab=zlab"), ifelse("sub" %in% dnm,
                                                                                                        "", ",sub=subs"), ",...)", sep = "")
    txt <- paste("persp(m1,m2,z,col=col,zlim=zlim", ifelse("border" %in%
                                                             dnm, "", ",border=lo.col"), stub, sep = "")
    eval(parse(text = txt))
    par(new = TRUE)
    z <- fv$fit
    z <- matrix(z, n.grid, n.grid)
    z = exp(z) # HERE

    txt <- paste("persp(m1,m2,z,col=col,zlim=zlim", ifelse("border" %in%
                                                             dnm, "", ",border=\"black\""), stub, sep = "")
    eval(parse(text = txt))
    par(new = TRUE)
    z <- fv$fit + se * fv$se.fit
    z <- matrix(z, n.grid, n.grid)
    z = exp(z) # HERE

    txt <- paste("persp(m1,m2,z,col=col,zlim=zlim", ifelse("border" %in%
                                                             dnm, "", ",border=hi.col"), stub, sep = "")
    eval(parse(text = txt))
  }


  list(m1 = m1, m2 = m2, z = z)


}

Try the flexmsm package in your browser

Any scripts or data that you put into this service are public.

flexmsm documentation built on Sept. 11, 2024, 7:23 p.m.