inst/tinytest/test-convergence.R

# context("Convergence checkers work") 

# test_that("Multiple chains mcmc behaves", {
  
set.seed(71)
n <- 1000
x <- rnorm(n)
s <- 2
y <- 1 + .2*x + rnorm(n, sd = s)

ll <- function(p) {
  ans <- sum(log(dnorm(y - p[1] - x*p[2], sd = p[3])))
  if (!is.finite(ans))
    return(-.Machine$double.xmax*1e-10)
  ans
}

# Gwedeke autostop convergence
ans0 <- suppressWarnings(suppressMessages(MCMC(
  ll, initial = rep(5, 3), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
    ), conv_checker = convergence_auto(500L),
  thin = 10, seed = 444
  )))

expect_stdout(print(LAST_CONV_CHECK), "holds the")

ans0 <- MCMC(
  ll, initial = tail(ans0, 0L), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), conv_checker = NULL,
  thin = 10, burnin = 0L, seed = 548
)

ans0b <- suppressWarnings(suppressMessages(MCMC(
  ll, initial = rep(5, 3), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), conv_checker = convergence_auto(500L),
  thin = 10, seed = 444
)))

ans0b <- MCMC(
  ll, initial = tail(ans0b, 0L), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), conv_checker = NULL,
  thin = 10, burnin = 0L, seed = 548
)

expect_equal(ans0, ans0b)


# Gelman autostop convergence
expect_error({
  suppressMessages(suppressWarnings(MCMC(
    ll, initial = rep(5, 3), nsteps = 2000,
    kernel = kernel_normal_reflective(
      lb = 0, ub = 10, mu = 0, scale = .1
    ),
    thin         = 10,
    conv_checker = convergence_gelman(500L),
    nchains      = 1
  )))
})

ans1 <- suppressMessages(suppressWarnings(MCMC(
  ll, initial = rep(5, 3), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ),
  thin         = 10,
  conv_checker = convergence_gelman(500L),
  nchains      = 2, seed = 2
)))

ans1b <- suppressMessages(suppressWarnings(MCMC(
  ll, initial = rep(5, 3), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ),
  thin         = 10,
  conv_checker = convergence_auto(500L),
  nchains      = 2, seed = 2
)))

ans1 <- MCMC(
  ll,
  initial = colMeans(do.call(rbind, tail(ans1, 0))),
  nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), conv_checker = NULL,
  thin = 10, burnin = 0L, seed = 22
)

ans1b <- MCMC(
  ll,
  initial = colMeans(do.call(rbind, tail(ans1b, 0))),
  nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), conv_checker = NULL,
  thin = 10, burnin = 0L, seed = 22
)

expect_equal(ans1, ans1b)

# Heidel autostop convergence
expect_error({
  suppressMessages(suppressWarnings(MCMC(
    ll, initial = rep(5, 3), nsteps = 2000,
    kernel = kernel_normal_reflective(
      lb = 0, ub = 10, mu = 0, scale = .1
    ), 
    thin = 10, conv_checker = convergence_heildel(500L),
    nchains = 2L
  )))
})
ans2 <- suppressMessages(suppressWarnings(MCMC(
  ll, initial = rep(5, 3), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), 
  thin = 10, conv_checker = convergence_heildel(500L)
)))

ans2 <- MCMC(
  ll, initial = tail(ans2, 0), nsteps = 2000,
  kernel = kernel_normal_reflective(
    lb = 0, ub = 10, mu = 0, scale = .1
  ), conv_checker = NULL,
  thin = 10, burnin = 0L
)

# Should reach an estimates close to the model parameters
sol <- c(1, .2, 2)
expect_equivalent(colMeans(ans0), sol, tol = 0.2)
expect_equivalent(colMeans(ans1), sol, tol = 0.2)
expect_equivalent(colMeans(ans2), sol, tol = 0.2)

# Checking errors and warnigns -------------------------------------------------
conv <- convergence_auto()
expect_warning(conv(1))

conv <- convergence_gelman()
expect_warning(conv(coda::mcmc.list(coda::mcmc(1), coda::mcmc(1))))

conv <- convergence_geweke()
expect_warning(conv(coda::mcmc(1)))

conv <- convergence_heildel()
expect_warning(conv(coda::mcmc(1)))

Try the fmcmc package in your browser

Any scripts or data that you put into this service are public.

fmcmc documentation built on Aug. 30, 2023, 1:09 a.m.