R/acf.R

Defines functions is.acf plot.mpacf taperedpacf taperedacf wpacf wacf kappa Ccf Pacf seasonalaxis Acf

Documented in Acf Ccf is.acf Pacf taperedacf taperedpacf

# Replacement for the acf() function.

#' (Partial) Autocorrelation and Cross-Correlation Function Estimation
#'
#' The function \code{Acf} computes (and by default plots) an estimate of the
#' autocorrelation function of a (possibly multivariate) time series. Function
#' \code{Pacf} computes (and by default plots) an estimate of the partial
#' autocorrelation function of a (possibly multivariate) time series. Function
#' \code{Ccf} computes the cross-correlation or cross-covariance of two
#' univariate series.
#'
#' The functions improve the \code{\link[stats]{acf}},
#' \code{\link[stats]{pacf}} and \code{\link[stats]{ccf}} functions. The main
#' differences are that \code{Acf} does not plot a spike at lag 0 when
#' \code{type=="correlation"} (which is redundant) and the horizontal axes show
#' lags in time units rather than seasonal units.
#'
#' The tapered versions implement the ACF and PACF estimates and plots
#' described in Hyndman (2015), based on the banded and tapered estimates of
#' autocovariance proposed by McMurry and Politis (2010).
#'
#' @param x a univariate or multivariate (not Ccf) numeric time series object
#' or a numeric vector or matrix.
#' @param y a univariate numeric time series object or a numeric vector.
#' @param lag.max maximum lag at which to calculate the acf. Default is
#' $10*log10(N/m)$ where $N$ is the number of observations and $m$ the number
#' of series. Will be automatically limited to one less than the number of
#' observations in the series.
#' @param type character string giving the type of acf to be computed. Allowed
#' values are \dQuote{\code{correlation}} (the default),
#' \dQuote{\code{covariance}} or \dQuote{\code{partial}}.
#' @param plot logical. If \code{TRUE} (the default) the resulting acf, pacf or
#' ccf is plotted.
#' @param na.action function to handle missing values. Default is
#' \code{\link[stats]{na.contiguous}}.  Useful alternatives are
#' \code{\link[stats]{na.pass}} and \code{\link{na.interp}}.
#' @param demean Should covariances be about the sample means?
#' @param calc.ci If \code{TRUE}, confidence intervals for the ACF/PACF
#' estimates are calculated.
#' @param level Percentage level used for the confidence intervals.
#' @param nsim The number of bootstrap samples used in estimating the
#' confidence intervals.
#' @param ... Additional arguments passed to the plotting function.
#' @return The \code{Acf}, \code{Pacf} and \code{Ccf} functions return objects
#' of class "acf" as described in \code{\link[stats]{acf}} from the stats
#' package. The \code{taperedacf} and \code{taperedpacf} functions return
#' objects of class "mpacf".
#' @author Rob J Hyndman
#' @seealso \code{\link[stats]{acf}}, \code{\link[stats]{pacf}},
#' \code{\link[stats]{ccf}}, \code{\link{tsdisplay}}
#' @references Hyndman, R.J. (2015). Discussion of ``High-dimensional
#' autocovariance matrices and optimal linear prediction''. \emph{Electronic
#' Journal of Statistics}, 9, 792-796.
#'
#' McMurry, T. L., & Politis, D. N. (2010). Banded and tapered estimates for
#' autocovariance matrices and the linear process bootstrap. \emph{Journal of
#' Time Series Analysis}, 31(6), 471-482.
#' @keywords ts
#' @examples
#'
#' Acf(wineind)
#' Pacf(wineind)
#' \dontrun{
#' taperedacf(wineind, nsim=50)
#' taperedpacf(wineind, nsim=50)
#' }
#'
#' @export
Acf <- function(x, lag.max = NULL,
                type = c("correlation", "covariance", "partial"),
                plot = TRUE, na.action = na.contiguous, demean=TRUE, ...) {
  type <- match.arg(type)

  # Set maximum lag
  nseries <- NCOL(x)
  if (is.null(lag.max)) {
    lag.max <- as.integer(max(
      floor(10 * (log10(NROW(x)) - log10(nseries))),
      2 * frequency(x)
    ))
  }

  acf.out <- stats::acf(
    x, plot = FALSE, lag.max = lag.max,
    type = type, na.action = na.action, demean = demean
  )

  acf.out$tsp <- tsp(x)
  acf.out$periods <- attributes(x)$msts
  acf.out$series <- deparse(substitute(x))

  # Make lags in integer units
  nlags <- dim(acf.out$lag)[1]
  if (type == "partial") {
    acf.out$lag[, , ] <- seq(nlags)
  } else {
    acf.out$lag[, , ] <- seq(nlags)-1
  }

  # Plot if required
  if (plot) {
    plot.out <- acf.out
    # Hide 0 lag if autocorrelations
    if (type == "correlation") {
      for (i in seq(NCOL(x)))
      {
        plot.out$lag[1, i, i] <- 1
        plot.out$acf[1, i, i] <- 0
      }
    }
    if (nseries > 1) {
      plot(plot.out, ...)
    } else {
      # Check if there is a ylim input
      input_list <- as.list(substitute(list(...)))
      ylimarg <- is.element("ylim", names(input_list))
      if (ylimarg) {
        plot(plot.out, xaxt = "n", ...)
      } else {
        ylim <- c(-1, 1) * 3 / sqrt(length(x))
        ylim <- range(ylim, plot.out$acf)
        plot(plot.out, ylim = ylim, xaxt = "n", ...)
      }
      # Make nice horizontal axis
      if (is.element("msts", class(x))) {
        seasonalaxis(attributes(x)$msts, nlags, type = "acf")
      } else {
        seasonalaxis(frequency(x), nlags, type = "acf")
      }
      if (type == "covariance") {
        axis(at = 0, side = 1)
      }
    }
    return(invisible(acf.out))
  }
  else {
    return(acf.out)
  }
}

# Make nice horizontal axis with ticks at seasonal lags
# Return tick points if breaks=TRUE
seasonalaxis <- function(frequency, nlags, type, plot=TRUE) {
  # List of unlabelled tick points
  out2 <- NULL
  # Check for non-seasonal data
  if (length(frequency) == 1) {
    # Compute number of seasonal periods
    np <- trunc(nlags / frequency)
    evenfreq <- (frequency %% 2L) == 0L

    # Defaults for labelled tick points
    if (type == "acf") {
      out <- pretty(1:nlags)
    } else {
      out <- pretty(-nlags:nlags)
    }

    if (frequency == 1) {
      if (type == "acf" && nlags <= 16) {
        out <- 1:nlags
      } else if (type == "ccf" && nlags <= 8) {
        out <- (-nlags:nlags)
      } else {
        if (nlags <= 30 && type == "acf") {
          out2 <- 1:nlags
        } else if (nlags <= 15 && type == "ccf") {
          out2 <- (-nlags:nlags)
        }
        if (!is.null(out2)) {
          out <- pretty(out2)
        }
      }
    }
    else if (frequency > 1 &&
      ((type == "acf" && np >= 2L) || (type == "ccf" && np >= 1L))) {
      if (type == "acf" && nlags <= 40) {
        out <- frequency * (1:np)
        out2 <- 1:nlags
        # Add half-years
        if (nlags <= 30 && evenfreq && np <= 3) {
          out <- c(out, frequency * ((1:np) - 0.5))
        }
      }
      else if (type == "ccf" && nlags <= 20) {
        out <- frequency * (-np:np)
        out2 <- (-nlags:nlags)
        # Add half-years
        if (nlags <= 15 && evenfreq && np <= 3) {
          out <- c(out, frequency * ((-np:np) + 0.5))
        }
      }
      else if (np < (12 - 4 * (type == "ccf"))) {
        out <- frequency * (-np:np)
      }
    }
  }
  else {
    # Determine which frequency to show
    np <- trunc(nlags / frequency)
    frequency <- frequency[which(np <= 16)]
    if (length(frequency) > 0L) {
      frequency <- min(frequency)
    } else {
      frequency <- 1
    }
    out <- seasonalaxis(frequency, nlags, type, plot = FALSE)
  }
  if (plot) {
    axis(1, at = out)
    if (!is.null(out2)) {
      axis(1, at = out2, tcl = -0.2, labels = FALSE)
    }
  }
  else {
    return(out)
  }
}

#' @rdname Acf
#' @export
Pacf <- function(x, lag.max=NULL,
                 plot = TRUE, na.action = na.contiguous, demean=TRUE, ...) {
  object <- Acf(
    x, lag.max = lag.max, type = "partial",
    na.action = na.action, demean = demean, plot = FALSE
  )
  object$series <- deparse(substitute(x))

  # Plot if required
  if (plot) {
    nlags <- dim(object$lag)[1]
    plot.out <- object
    # Check if there is a ylim input
    input_list <- as.list(substitute(list(...)))
    ylimarg <- is.element("ylim", names(input_list))
    if (ylimarg) {
      plot(plot.out, xaxt = "n", ...)
    } else {
      ylim <- c(-1, 1) * 3 / sqrt(length(x))
      ylim <- range(ylim, plot.out$acf)
      plot(plot.out, ylim = ylim, xaxt = "n", ...)
    }
    # Make nice horizontal axis
    if (is.element("msts", class(x))) {
      seasonalaxis(attributes(x)$msts, nlags, type = "acf")
    } else {
      seasonalaxis(frequency(x), nlags, type = "acf")
    }
    return(invisible(object))
  }
  else {
    return(object)
  }
}

#' @rdname Acf
#' @export
Ccf <- function(x, y, lag.max=NULL, type=c("correlation", "covariance"),
                plot=TRUE, na.action=na.contiguous, ...) {
  type <- match.arg(type)

  if (is.null(lag.max)) {
    lag.max <- as.integer(max(floor(10 * log10(NROW(x))), 2 * frequency(x)))
  }

  ccf.out <- stats::ccf(
    x, y, plot = FALSE, type = type,
    lag.max = lag.max, na.action = na.action
  )

  # Make lags in integer units
  nlags <- (dim(ccf.out$lag)[1] - 1) / 2
  ccf.out$lag[, 1, 1] <- -nlags:nlags
  # Plot if required
  if (plot) {
    vnames <- c(deparse(substitute(x))[1L], deparse(substitute(y))[1L])
    ccf.out$snames <- paste(vnames, collapse = " & ")
    plot(ccf.out, ylab = "CCF", xaxt = "n", ...)
    seasonalaxis(frequency(x), nlags, type = "ccf")
    return(invisible(ccf.out))
  }
  else {
    return(ccf.out)
  }
}

kappa <- function(x) {
  k <- rep(0, length(x))
  x <- abs(x)
  k[x <= 1] <- 1
  k[x > 1 & x <= 2] <- 2 - x[x > 1 & x <= 2]
  return(k)
}

# McMurray-Politis estimate of ACF

wacf <- function(x, lag.max = length(x) - 1) {
  n <- length(x)
  lag.max <- min(lag.max, n - 1)
  if (lag.max < 0) {
    stop("'lag.max' must be at least 0")
  }

  # Standard estimator
  acfest <- stats::acf(
    c(x), lag.max = lag.max,
    plot = FALSE, na.action = na.contiguous
  )
  acfest$series <- deparse(substitute(x))

  # Taper estimates
  s <- 1:length(acfest$acf[, , 1])
  upper <- 2 * sqrt(log(n, 10) / n)
  ac <- abs(acfest$acf[, , 1])
  # Find l: ac < upper for 5 consecutive lags
  j <- (ac < upper)
  l <- 0
  k <- 1
  N <- length(j) - 4
  while (l < 1 && k <= N) {
    if (all(j[k:(k + 4)])) {
      l <- k
    } else {
      k <- k + 1
    }
  }
  acfest$acf[, , 1] <- acfest$acf[, , 1] * kappa(s / l)
  # End of Tapering

  # Now do some shrinkage towards white noise using eigenvalues
  # Construct covariance matrix
  gamma <- acfest$acf[, , 1]
  s <- length(gamma)
  Gamma <- matrix(1, s, s)
  d <- row(Gamma) - col(Gamma)
  for (i in 1:(s - 1))
    Gamma[d == i | d == (-i)] <- gamma[i + 1]
  # Compute eigenvalue decomposition
  ei <- eigen(Gamma)
  # Shrink eigenvalues
  d <- pmax(ei$values, 20 / n)
  # Construct new covariance matrix
  Gamma2 <- ei$vectors %*% diag(d) %*% t(ei$vectors)
  Gamma2 <- Gamma2 / mean(d)
  # Estimate new ACF
  d <- row(Gamma2) - col(Gamma2)
  for (i in 2:s)
    gamma[i] <- mean(Gamma2[d == (i - 1)])
  acfest$acf[, , 1] <- gamma
  ############### end of shrinkage

  return(acfest)
}

# Find tapered PACF using LD recursions

wpacf <- function(x, lag.max=length(x) - 1) {
  # Compute pacf as usual, just to set up structure
  out <- Pacf(x, lag.max = lag.max, plot = FALSE)
  # Compute acf using tapered estimate
  acvf <- wacf(x, lag.max = lag.max)$acf[, , 1]

  # Durbin-Levinson recursions
  # Modified from http://faculty.washington.edu/dbp/s519/R-code/LD-recursions.R
  p <- length(acvf) - 1
  phis <- acvf[2] / acvf[1]
  pev <- rep(acvf[1], p + 1)
  pacf <- rep(phis, p)
  pev[2] <- pev[1] * (1 - phis ^ 2)
  if (p > 1) {
    for (k in 2:p)
    {
      old.phis <- phis
      phis <- rep(0, k)
      ## compute kth order pacf (reflection coefficient)
      phis[k] <- (acvf[k + 1] - sum(old.phis * acvf[k:2])) / pev[k]
      phis[1:(k - 1)] <- old.phis - phis[k] * rev(old.phis)
      pacf[k] <- phis[k]
      pev[k + 1] <- pev[k] * (1 - phis[k] ^ 2)
      # if(abs(pacf[k]) > 1)
      #  warning("PACF larger than 1 in absolute value")
    }
  }
  out$acf[, , 1] <- pacf

  return(out)
}

# Function to produce new style plot of ACF or PACF with CI
# x = time series

#' @rdname Acf
#' @export
taperedacf <- function(x, lag.max=NULL, type=c("correlation", "partial"),
                       plot=TRUE, calc.ci=TRUE, level=95, nsim=100, ...) {
  type <- match.arg(type)

  if (is.null(lag.max)) {
    lag.max <- max(floor(20 * log10(length(x))), 4 * frequency(x))
  }
  lag <- min(lag.max, length(x) - 1)

  if (type == "correlation") {
    z <- wacf(x, )$acf[2:(lag + 1), , 1]
  } else {
    z <- wpacf(x, )$acf[1:lag, , 1]
  }
  out <- list(z = z, lag = lag, type = type, x = x)

  if (calc.ci) {
    # Get confidence intervals for plots
    bootsim <- lpb(x, nsim = nsim)
    s1 <- matrix(0, nrow = lag, ncol = nsim)
    if (type == "correlation") {
      for (i in 1:nsim)
        s1[, i] <- wacf(bootsim[, i])$acf[2:(lag + 1), , 1]
    }
    else {
      for (i in 1:nsim)
        s1[, i] <- wpacf(bootsim[, i])$acf[1:lag, , 1]
    }
    prob <- (100 - level) / 200
    out$upper <- apply(s1, 1, quantile, prob = 1 - prob)
    out$lower <- apply(s1, 1, quantile, prob = prob)
  }
  out <- structure(out, class = "mpacf")

  if (!plot) {
    return(out)
  } else {
    plot(out, ...)
    return(invisible(out))
  }
  return(out)
}

#' @rdname Acf
#' @export
taperedpacf <- function(x, ...) {
  taperedacf(x, type = "partial", ...)
}

#' @export
plot.mpacf <- function(x, xlim=NULL, ylim=NULL,
                       xlab="Lag", ylab="", ...) {
  object <- x
  lagx <- 1:object$lag

  if (is.null(xlim)) {
    xlim <- c(1, object$lag)
  }
  if (is.null(ylim)) {
    ylim <- range(object$z, object$upper, object$lower)
  }
  if (ylab == "") {
    ylab <- ifelse(object$type == "partial", "PACF", "ACF")
  }

  plot(
    lagx, object$z, type = "n", xlim = xlim, ylim = ylim,
    xlab = xlab, ylab = ylab, xaxt = "n", ...
  )

  grid(col = gray(.80), nx = NA, ny = NULL, lty = 1)
  abline(h = 0, col = gray(.4))
  if (frequency(object$x) > 1) {
    axis(1, at = (0:100) * frequency(object$x))
    for (i in 1:100)
      abline(v = (i - 1) * frequency(object$x), lty = 1, col = gray(0.80))
  }
  else {
    axis(1)
    grid(col = gray(.80), ny = NA, lty = 1)
  }
  if (!is.null(object$lower)) {
    for (j in 1:object$lag)
    {
      polygon(
        lagx[j] + c(-0.55, 0.55, 0.55, -0.55),
        c(rep(object$lower[j], 2), rep(object$upper[j], 2)),
        col = gray(0.60), border = FALSE
      )
    }
    #    polygon(c(lagx,rev(lagx)),c(object$lower,rev(object$upper)),col=gray(.60),border=FALSE)
  }
  lines(lagx, object$z, lwd = 1.5)
  j <- (object$lower < 0 & object$upper > 0)
  points(lagx[j], object$z[j], pch = 1, cex = 0.5)
  points(lagx[!j], object$z[!j], pch = 19)
}

#' @rdname is.ets
#' @export
is.acf <- function(x) {
  inherits(x, "acf")
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.