Nothing
#' @rdname is.forecast
#' @export
is.mforecast <- function(x) {
inherits(x, "mforecast")
}
mlmsplit <- function(x, index=NULL) {
if (is.null(index)) {
stop("Must select lm using index=integer(1)")
}
mfit <- match(c("coefficients", "residuals", "effects", "fitted.values"), names(x), 0L)
for (j in mfit) {
x[[j]] <- x[[j]][, index]
}
class(x) <- "lm"
y <- attr(x$terms, "response")
yName <- make.names(colnames(x$model[[y]])[index])
x$model[[y]] <- x$model[[y]][, index]
colnames(x$model)[y] <- yName
attr(x$model, "terms") <- terms(reformulate(attr(x$terms, "term.labels"), response = yName), data = x$model)
if (!is.null(tsp(x$data[, 1]))) {
tspx <- tsp(x$data[, 1]) # Consolidate ts attributes for forecast.lm
x$data <- lapply(x$model, function(x) ts(x, start = tspx[1], end = tspx[2], frequency = tspx[3]))
class(x$data) <- "data.frame"
row.names(x$data) <- 1:max(sapply(x$data, NROW))
}
x$terms <- terms(x$model)
return(x)
}
#' Forecast a multiple linear model with possible time series components
#'
#' \code{forecast.mlm} is used to predict multiple linear models, especially
#' those involving trend and seasonality components.
#'
#' \code{forecast.mlm} is largely a wrapper for
#' \code{\link[forecast]{forecast.lm}()} except that it allows forecasts to be
#' generated on multiple series. Also, the output is reformatted into a
#' \code{mforecast} object.
#'
#' @param object Object of class "mlm", usually the result of a call to
#' \code{\link[stats]{lm}} or \code{\link{tslm}}.
#' @param newdata An optional data frame in which to look for variables with
#' which to predict. If omitted, it is assumed that the only variables are
#' trend and season, and \code{h} forecasts are produced.
#' @param level Confidence level for prediction intervals.
#' @param fan If \code{TRUE}, level is set to seq(51,99,by=3). This is suitable
#' for fan plots.
#' @param h Number of periods for forecasting. Ignored if \code{newdata}
#' present.
#' @param ts If \code{TRUE}, the forecasts will be treated as time series
#' provided the original data is a time series; the \code{newdata} will be
#' interpreted as related to the subsequent time periods. If \code{FALSE}, any
#' time series attributes of the original data will be ignored.
#' @param ... Other arguments passed to \code{\link[forecast]{forecast.lm}()}.
#' @inheritParams forecast.ts
#'
#' @return An object of class "\code{mforecast}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results, while the function \code{plot} produces a plot of the forecasts and
#' prediction intervals.
#'
#' The generic accessor functions \code{fitted.values} and \code{residuals}
#' extract useful features of the value returned by \code{forecast.lm}.
#'
#' An object of class \code{"mforecast"} is a list containing at least the
#' following elements: \item{model}{A list containing information about the
#' fitted model} \item{method}{The name of the forecasting method as a
#' character string} \item{mean}{Point forecasts as a multivariate time series}
#' \item{lower}{Lower limits for prediction intervals of each series}
#' \item{upper}{Upper limits for prediction intervals of each series}
#' \item{level}{The confidence values associated with the prediction intervals}
#' \item{x}{The historical data for the response variable.}
#' \item{residuals}{Residuals from the fitted model. That is x minus fitted
#' values.} \item{fitted}{Fitted values}
#' @author Mitchell O'Hara-Wild
#' @seealso \code{\link{tslm}}, \code{\link{forecast.lm}},
#' \code{\link[stats]{lm}}.
#' @examples
#'
#' lungDeaths <- cbind(mdeaths, fdeaths)
#' fit <- tslm(lungDeaths ~ trend + season)
#' fcast <- forecast(fit, h=10)
#'
#' carPower <- as.matrix(mtcars[,c("qsec","hp")])
#' carmpg <- mtcars[,"mpg"]
#' fit <- lm(carPower ~ carmpg)
#' fcast <- forecast(fit, newdata=data.frame(carmpg=30))
#'
#' @export
forecast.mlm <- function(object, newdata, h=10, level=c(80, 95), fan=FALSE, lambda=object$lambda, biasadj=NULL, ts=TRUE, ...) {
out <- list(model = object, forecast = vector("list", NCOL(object$coefficients)))
cl <- match.call()
cl[[1]] <- quote(forecast.lm)
cl$object <- quote(mlmsplit(object, index = i))
for (i in seq_along(out$forecast)) {
out$forecast[[i]] <- eval(cl)
out$forecast[[i]]$series <- colnames(object$coefficients)[i]
}
out$method <- rep("Multiple linear regression model", length(out$forecast))
names(out$forecast) <- names(out$method) <- colnames(object$coefficients)
return(structure(out, class = "mforecast"))
}
#' Forecasting time series
#'
#' \code{mforecast} is a class of objects for forecasting from multivariate
#' time series or multivariate time series models. The function invokes
#' particular \emph{methods} which depend on the class of the first argument.
#'
#' For example, the function \code{\link{forecast.mlm}} makes multivariate
#' forecasts based on the results produced by \code{\link{tslm}}.
#'
#' @aliases mforecast print.mforecast summary.mforecast as.data.frame.mforecast
#'
#' @param object a multivariate time series or multivariate time series model
#' for which forecasts are required
#' @param h Number of periods for forecasting
#' @param level Confidence level for prediction intervals.
#' @param fan If TRUE, \code{level} is set to \code{seq(51,99,by=3)}. This is
#' suitable for fan plots.
#' @param robust If TRUE, the function is robust to missing values and outliers
#' in \code{object}. This argument is only valid when \code{object} is of class
#' \code{mts}.
#' @param find.frequency If TRUE, the function determines the appropriate
#' period, if the data is of unknown period.
#' @param allow.multiplicative.trend If TRUE, then ETS models with
#' multiplicative trends are allowed. Otherwise, only additive or no trend ETS
#' models are permitted.
#' @param ... Additional arguments affecting the forecasts produced.
#' @inheritParams forecast.ts
#' @return An object of class "\code{mforecast}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results, while the function \code{plot} produces a plot of the multivariate
#' forecasts and prediction intervals.
#'
#' The generic accessors functions \code{fitted.values} and \code{residuals}
#' extract various useful features of the value returned by
#' \code{forecast$model}.
#'
#' An object of class \code{"mforecast"} is a list usually containing at least
#' the following elements: \item{model}{A list containing information about the
#' fitted model} \item{method}{The name of the forecasting method as a
#' character string} \item{mean}{Point forecasts as a time series}
#' \item{lower}{Lower limits for prediction intervals} \item{upper}{Upper
#' limits for prediction intervals} \item{level}{The confidence values
#' associated with the prediction intervals} \item{x}{The original time series
#' (either \code{object} itself or the time series used to create the model
#' stored as \code{object}).} \item{residuals}{Residuals from the fitted model.
#' For models with additive errors, the residuals will be x minus the fitted
#' values.} \item{fitted}{Fitted values (one-step forecasts)}
#' @author Rob J Hyndman & Mitchell O'Hara-Wild
#' @seealso Other functions which return objects of class \code{"mforecast"}
#' are \code{\link{forecast.mlm}}, \code{forecast.varest}.
#'
#' @export
forecast.mts <- function(object, h=ifelse(frequency(object) > 1, 2 * frequency(object), 10),
level=c(80, 95), fan=FALSE, robust=FALSE, lambda = NULL, biasadj = FALSE, find.frequency = FALSE,
allow.multiplicative.trend=FALSE, ...) {
out <- list(forecast = vector("list", NCOL(object)))
cl <- match.call()
cl[[1]] <- quote(forecast.ts)
cl$object <- quote(object[, i])
for (i in 1:NCOL(object)) {
out$forecast[[i]] <- eval(cl)
out$forecast[[i]]$series <- colnames(object)[i]
}
out$method <- vapply(out$forecast, function(x) x$method, character(1))
names(out$forecast) <- names(out$method) <- colnames(object)
return(structure(out, class = "mforecast"))
}
#' @export
print.mforecast <- function(x, ...) {
lapply(x$forecast, function(x) {
cat(paste0(x$series, "\n"))
print(x)
cat("\n")
})
return(invisible())
}
#' Multivariate forecast plot
#'
#' Plots historical data with multivariate forecasts and prediction intervals.
#'
#' \code{autoplot} will produce an equivalent plot as a ggplot object.
#'
#' @param x Multivariate forecast object of class \code{mforecast}.
#' @param object Multivariate forecast object of class \code{mforecast}. Used
#' for ggplot graphics (S3 method consistency).
#' @param main Main title. Default is the forecast method. For autoplot,
#' specify a vector of titles for each plot.
#' @param xlab X-axis label. For autoplot, specify a vector of labels for each
#' plot.
#' @param PI If \code{FALSE}, confidence intervals will not be plotted, giving
#' only the forecast line.
#' @param facets If TRUE, multiple time series will be faceted. If FALSE, each
#' series will be assigned a colour.
#' @param colour If TRUE, the time series will be assigned a colour aesthetic
#' @param series Matches an unidentified forecast layer with a coloured object
#' on the plot.
#' @param \dots additional arguments to each individual \code{plot}.
#' @author Mitchell O'Hara-Wild
#' @seealso \code{\link[forecast]{plot.forecast}}, \code{\link[stats]{plot.ts}}
#' @references Hyndman and Athanasopoulos (2018) \emph{Forecasting: principles
#' and practice}, 2nd edition, OTexts: Melbourne, Australia.
#' \url{https://otexts.com/fpp2/}
#' @keywords ts
#' @examples
#' library(ggplot2)
#'
#' lungDeaths <- cbind(mdeaths, fdeaths)
#' fit <- tslm(lungDeaths ~ trend + season)
#' fcast <- forecast(fit, h=10)
#' plot(fcast)
#' autoplot(fcast)
#'
#' carPower <- as.matrix(mtcars[,c("qsec","hp")])
#' carmpg <- mtcars[,"mpg"]
#' fit <- lm(carPower ~ carmpg)
#' fcast <- forecast(fit, newdata=data.frame(carmpg=30))
#' plot(fcast, xlab="Year")
#' autoplot(fcast, xlab=rep("Year",2))
#'
#' @export
plot.mforecast <- function(x, main=paste("Forecasts from", unique(x$method)), xlab="time", ...) {
oldpar <- par(mfrow = c(length(x$forecast), 1), mar = c(0, 5.1, 0, 2.1), oma = c(6, 0, 5, 0))
on.exit(par(oldpar))
for (fcast in x$forecast)
{
plot(fcast, main = "", xaxt = "n", ylab = fcast$series, ...)
}
axis(1)
mtext(xlab, outer = TRUE, side = 1, line = 3)
title(main = main, outer = TRUE)
}
#' @export
summary.mforecast <- function(object, ...) {
class(object) <- c("summary.mforecast", class(object))
object
}
#' @export
print.summary.mforecast <- function(x, ...) {
cat(paste("\nForecast method:", unique(x$method)))
cat(paste("\n\nModel Information:\n"))
print(x$model)
cat("\nError measures:\n")
print(accuracy(x))
if (is.null(x$forecast)) {
cat("\n No forecasts\n")
} else {
cat("\nForecasts:\n")
NextMethod()
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.