Nothing
#' deep UI Function
#'
#' @description A shiny Module.
#'
#' @param id,input,output,session Internal parameters for {shiny}.
#'
#' @noRd
#'
#' @importFrom shiny NS tagList
#' @importFrom forecast forecast nnetar
mod_deep_ui <- function(id){
ns <- NS(id)
opc_deep <- div(
conditionalPanel(
condition = "input.Boxdeep == 'tabText' | input.Boxdeep == 'tabPlot'", ns = ns,
tabsOptions(list(icon("gear")), 100, 70, tabs.content = list(
list(
conditionalPanel(
condition = "input.Boxdeep == 'tabText'", ns = ns,
options.run(ns("run_deep")), tags$hr(style = "margin-top: 0px;"),
tags$div(
col_4(numericInput(ns("laginput"), labelInput("llag"), 1, width = "100%")),
col_4(numericInput(ns("batinput"), labelInput("lbat"), 1, width = "100%")),
col_4(numericInput(ns("epoinput"), labelInput("lepo"), 1, width = "100%")),
col_4(selectInput(ns("losinput"), labelInput("llos"), c("mse", "mae"))),
col_4(selectInput(ns("optinput"), labelInput("lopt"), c("adam", "rmsprop", "sgd"))),
col_4(selectInput(ns("metinput"), labelInput("lmet"), c("mse", "mae", "mape"))),
col_4(
chooserInput(
ns("capa"), labelInput("lcap"), labelInput("lmod"),
size = 10, idright = ns("rcapa"),
c("rnn", "lstm", "dense", "dropout"), c()
)
),
col_8(uiOutput(ns("capaopts")))
)
),
conditionalPanel(
condition = "input.Boxdeep == 'tabPlot'", ns = ns,
options.run(NULL), tags$hr(style = "margin-top: 0px;"),
fluidRow(
col_4(
colourpicker::colourInput(
ns("col_train_deep"), labelInput("coltrain"), "#5470c6",
allowTransparent = T)
),
col_4(
colourpicker::colourInput(
ns("col_test_deep"), labelInput("coltest"), "#91cc75",
allowTransparent = T)
),
col_4(
colourpicker::colourInput(
ns("col_p_deep"), labelInput("colpred"), "#fac858",
allowTransparent = T)
)
)
)
)
))
)
)
tagList(
tabBoxPrmdt(
id = ns("Boxdeep"), opciones = opc_deep, #title = titulo_disp,
tabPanel(
title = labelInput("text_m"), value = "tabText",
div(style = "height: 70vh; overflow: scroll;",
withLoader(verbatimTextOutput(ns("text_deep")),
type = "html", loader = "loader4"))
),
tabPanel(
title = labelInput("table_m"), value = "tabTable",
withLoader(DT::dataTableOutput(ns('table_deep'), height = "70vh"),
type = "html", loader = "loader4")
),
tabPanel(
title = labelInput("plot_m"), value = "tabPlot",
echarts4rOutput(ns("plot_deep"), height = "70vh")
),
tabPanel(
title = labelInput("error_m"), value = "tabError",
uiOutput(ns("error_deep"))
)
)
)
}
#' deep Server Function
#'
#' @noRd
#'
#' @importFrom stringr str_detect
mod_deep_server <- function(input, output, session, updateData, rvmodelo) {
ns <- session$ns
capas <- list()
vars <- rv(selcapa = NULL)
observeEvent(input$Boxdeep, {
if(input$Boxdeep == "tabText") {
shinyjs::show('run_deep')
} else {
shinyjs::hide('run_deep')
}
})
observeEvent(c(updateData$train, updateData$test), {
updateTabsetPanel(session, "Boxdeep", selected = "tabText")
})
observeEvent(input$capa, {
agregar <- input$capa$right[!input$capa$right %in% names(capas)]
eliminar <- names(capas)[!names(capas) %in% input$capa$right]
lags <- input$laginput
if(length(agregar) == 1) {
if(str_detect(agregar, "lstm")) {
capas[[agregar]] <<- list(
layer = "lstm", units = 10, activation = "tanh")
} else if(str_detect(agregar, "rnn")) {
capas[[agregar]] <<- list(
layer = "rnn", units = 10, activation = "tanh")
} else if(str_detect(agregar, "dense")) {
capas[[agregar]] <<- list(
layer = "dense", units = 10, activation = "linear")
} else if(str_detect(agregar, "dropout")) {
capas[[agregar]] <<- list(layer = "dropout", rate = 0.5)
}
vars$selcapa <- agregar
} else if(length(eliminar) == 1) {
capas[[eliminar]] <<- NULL
vars$selcapa <- NULL
}
})
observeEvent(input$rcapa, {
vars$selcapa <- input$rcapa
})
output$capaopts <- renderUI({
nombre_capa <- vars$selcapa
if(is.null(nombre_capa)) {
return(NULL)
}
opts <- capas[[nombre_capa]]
res <- NULL
if(str_detect(opts$layer, "lstm|rnn|dense")) {
res <- tags$div(
numericInput(ns("units"), "Cantidad de unidades", opts$units),
selectInput(
ns("activation"), "Activacion",
choices = c("linear", "tanh", "relu", "sigmoid", "softmax"),
opts$activation
)
)
} else if(str_detect(opts$layer, "dropout")) {
res <- tags$div(
fluidRow(col_12(
sliderInput(ns("rate"), "Ratio", 0, 100, opts$rate * 100, 1, post = "%")
))
)
}
return(res)
})
observeEvent(input$units, {
units <- ifelse(is.na(input$units), 1, input$units)
capas[[vars$selcapa]][["units"]] <<- units
})
observeEvent(input$activation, {
capas[[vars$selcapa]][["activation"]] <<- input$activation
})
observeEvent(input$rate, {
rate <- input$rate / 100
capas[[vars$selcapa]][["rate"]] <<- rate
})
output$text_deep <- renderPrint({
input$run_deep
train <- updateData$train
test <- updateData$test
laginput <- isolate(input$laginput)
batinput <- isolate(input$batinput)
epoinput <- isolate(input$epoinput)
losinput <- isolate(input$losinput)
optinput <- isolate(input$optinput)
metinput <- isolate(input$metinput)
tryCatch({
modelo <- keras_model_sequential()
cod <- "modelo.deep <- keras_model_sequential()"
for (capa in capas) {
if(capa$layer == "lstm") {
modelo <- modelo %>% layer_lstm(
units = capa$units, activation = capa$activation,
batch_input_shape = c(1, laginput, 1),
return_sequences = TRUE, stateful = TRUE)
cod <- paste0(cod, " %>% layer_lstm(
units = ", capa$units, ", activation = '", capa$activation, "',
batch_input_shape = c(1, ", laginput, ", 1),
return_sequences = TRUE, stateful = TRUE)")
} else if(capa$layer == "rnn") {
modelo <- modelo %>% layer_simple_rnn(
units = capa$units, activation = capa$activation,
batch_input_shape = c(1, laginput, 1),
return_sequences = TRUE, stateful = TRUE)
cod <- paste0(cod, " %>% layer_simple_rnn(
units = ", capa$units, ", activation = '", capa$activation, "',
batch_input_shape = c(1, ", laginput, ", 1),
return_sequences = TRUE, stateful = TRUE)")
} else if(capa$layer == "dense") {
modelo <- modelo %>% layer_dense(
units = capa$units, activation = capa$activation,
batch_input_shape = c(1, laginput, 1))
cod <- paste0(cod, " %>% layer_dense(
units = ", capa$units, ", activation = '", capa$activation, "',
batch_input_shape = c(1, ", laginput, ", 1))")
} else if(capa$layer == "dropout") {
modelo <- modelo %>% layer_dropout(rate = capa$rate)
cod <- paste0(cod, " %>% layer_dropout(rate = ", capa$rate, ")")
}
}
modelo <- modelo %>% layer_dense(units = 1) %>%
compile(loss = losinput, optimizer = optinput, metrics = metinput)
cod <- paste0(cod, " %>% layer_dense(units = 1) %>%\n",
"compile(loss = '", losinput, "', optimizer = '", optinput,
"', metrics = '", metinput, "')")
modelo <- tskeras(train, modelo, laginput, batinput, epoinput)
pred <- pred.tskeras(modelo, length(test))
isolate(rvmodelo$deep$model <- modelo$m)
isolate(rvmodelo$deep$pred <- pred)
isolate(rvmodelo$deep$error <- tabla.errores(list(pred), test, "deep"))
cod <- paste0(
cod, "\n\n",
"modelo.deep <- tskeras(train, modelo.deep, lag = ", laginput, ")\n",
"pred.deep <- pred.tskeras(modelo.deep, h = length(test))\n",
"error.deep <- tabla.errores(list(pred.deep), test, 'Deep Learning')")
isolate(updateData$code[['deep']] <- list(docdeepm = cod))
modelo$m
}, error = function(e) {
showNotification(paste0("ERROR 0000: ", e), type = "error")
return(NULL)
})
})
output$table_deep <- DT::renderDataTable({
lg <- updateData$idioma
test <- isolate(updateData$test)
seriedf <- tail(isolate(updateData$seriedf), length(test))
seriedf[[1]] <- format(seriedf[[1]], '%Y-%m-%d %H:%M:%S')
tryCatch({
res <- data.frame(seriedf[[1]], seriedf[[2]], rvmodelo$deep$pred,
abs(seriedf[[2]] - rvmodelo$deep$pred))
colnames(res) <- tr(c('date', 'Real', 'table_m', 'diff'), lg)
res[, 2:4] <- round(res[, 2:4], 3)
cod <- paste0(
"s <- tail(seriedf, length(test))\n",
"res <- data.frame(s[[1]], s[[2]], pred.deep, abs(s[[2]] - pred.deep))\n",
"colnames(res) <- c('", paste(colnames(res), collapse = "','"), "')\n",
"res[, 2:4] <- round(res[, 2:4], 3)\nres")
isolate(updateData$code[['deep']][['docdeept']] <- cod)
DT::datatable(res, selection = 'none', editable = F, rownames = F,
options = list(dom = 'frtp', scrollY = "50vh"))
}, error = function(e) {
showNotification(paste0("ERROR 0000: ", e), type = "error")
return(NULL)
})
})
output$plot_deep <- renderEcharts4r({
train <- isolate(updateData$train)
test <- isolate(updateData$test)
lg <- updateData$idioma
pred <- rvmodelo$deep$pred
serie <- data.frame(ts.union(train, test, pred))
serie$date <- isolate(updateData$seriedf)[[1]]
colnames(serie) <- c("train", "test", "pred", "date")
colors <- c(input$col_train_deep, input$col_test_deep, input$col_p_deep)
tryCatch({
noms <- c(tr(c('train', 'test', 'table_m'), lg), 'pred.deep')
isolate(updateData$code[['deep']][['docdeepp']] <- code.plots(noms, colors))
opts <- list(
xAxis = list(
type = "category", data = format(serie$date, "%Y-%m-%d %H:%M:%S")),
yAxis = list(show = TRUE, scale = T),
series = list(
list(type = "line", data = serie$train, name = noms[1]),
list(type = "line", data = serie$test, name = noms[2]),
list(type = "line", data = serie$pred, name = noms[3])
)
)
e_charts() |> e_list(opts) |> e_legend() |> e_datazoom() |>
e_tooltip(trigger = 'axis') |> e_show_loading() |> e_color(colors)
}, error = function(e) {
showNotification(paste0("ERROR 0000: ", e), type = "error")
return(NULL)
})
})
output$error_deep <- renderUI({
lg <- updateData$idioma
tryCatch({
res <- div(
style = "display: table; width: 100%; height: 70vh; overflow: scroll;",
infoBox2(tr("mse", lg), rvmodelo$deep$error$MSE, NULL,
tags$img(src = 'img/ECM.svg', style = "max-width: 90%;"), "red", 6, fill = T),
infoBox2(tr("rmse", lg), rvmodelo$deep$error$RMSE, NULL,
tags$img(src = 'img/RECM.svg', style = "max-width: 90%;"), "yellow", 6, fill = T),
infoBox2(tr("re", lg), rvmodelo$deep$error$RE, NULL,
tags$img(src = 'img/ER.svg', style = "max-width: 90%;"), "green", 6, fill = T),
infoBox2(tr("cor", lg), rvmodelo$deep$error$CORR, NULL,
tags$img(src = 'img/correlacion.svg', style = "max-width: 90%;"), "navy", 6, fill = T)
)
isolate(updateData$code[['deep']][['docdeepe']] <- "error.deep")
res
}, error = function(e) {
showNotification(paste0("ERROR 0000: ", e), type = "error")
return(NULL)
})
})
}
## To be copied in the UI
# mod_deep_ui("deep_ui_1")
## To be copied in the server
# callModule(mod_deep_server, "deep_ui_1")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.