tests/test_visual_w_cochrane_mdata.R

library(forestplot)

# Cochrane data from the 'rmeta'-package
cochrane_from_rmeta <-
  structure(list(
    mean  = c(NA, NA, 0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017, NA, 0.531),
    lower = c(NA, NA, 0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365, NA, 0.386),
    upper = c(NA, NA, 0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831, NA, 0.731)
  ),
  .Names = c("mean", "lower", "upper"),
  row.names = c(NA, -11L),
  class = "data.frame"
  )

tabletext <- cbind(
  c(
    "", "Study", "Auckland", "Block",
    "Doran", "Gamsu", "Morrison", "Papageorgiou",
    "Tauesch", NA, "Summary"
  ),
  c(
    "Deaths", "(steroid)", "36", "1",
    "4", "14", "3", "1",
    "8", NA, NA
  ),
  c(
    "Deaths", "(placebo)", "60", "5",
    "11", "20", "7", "7",
    "10", NA, NA
  ),
  c(
    "", "OR", "0.58", "0.16",
    "0.25", "0.70", "0.35", "0.14",
    "1.02", NA, "0.53"
  )
)

# add extra "summary" line:
cochrane_from_rmeta <- rbind(
  cochrane_from_rmeta,
  cochrane_from_rmeta[nrow(cochrane_from_rmeta), ]
)

tabletext <- rbind(
  tabletext,
  c(
    "95% prediction interval",
    rep(NA, ncol(tabletext) - 1)
  )
)

# add second set of outcomes:
cochrane_from_rmeta <- cbind(cochrane_from_rmeta,
  "mean2" = c(NA, NA, exp(rnorm(7)), NA, NA, NA)
)
cochrane_from_rmeta <- cbind(cochrane_from_rmeta,
  "lower2" = cochrane_from_rmeta$mean2 / 2,
  "upper2" = cochrane_from_rmeta$mean2 * 2
)


fpDrawBarCI <- function(lower_limit, estimate, upper_limit, size, col, y.offset = 0.5, ...) {
  size <- ifelse(is.unit(size), convertUnit(size, unitTo = "npc", valueOnly = TRUE), size) * 0.9
  grid.polygon(
    x = unit(c(lower_limit, upper_limit, upper_limit, lower_limit), "native"),
    y = unit(y.offset + 0.5 * c(1, 1, -1, -1) * size, "npc"),
    gp = gpar(fill = col, col = col)
  )
}


###############################################
# (1)  forest plot for single set of outcomes:

forestplot(tabletext,
  fn.ci_sum = c(
    as.list(rep(
      "fpDrawSummaryCI",
      nrow(cochrane_from_rmeta) - 2
    )),
    fpDrawSummaryCI,
    fpDrawBarCI
  ),
  mean = cochrane_from_rmeta$mean,
  lower = cochrane_from_rmeta$lower,
  upper = cochrane_from_rmeta$upper,
  new_page = TRUE,
  is.summary = c(TRUE, TRUE, rep(FALSE, 8), TRUE, TRUE),
  clip = c(0.1, 2.5),
  xlog = TRUE,
  col = fpColors(box = "royalblue", line = "darkblue", summary = "royalblue")
)

###############################################
# (2)  forest plot for two sets of outcomes:

norm.arg <- list(NULL)
for (i in 1:12) {
  norm.arg[[i]] <- list(function(...) {
    fpDrawPointCI(pch = 15, ...)
  }, function(...) {
    fpDrawPointCI(pch = 18, ...)
  })
}

sum.arg <- c(
  as.list(rep("fpDrawSummaryCI", nrow(cochrane_from_rmeta) - 2)),
  fpDrawSummaryCI,
  fpDrawBarCI
)

forestplot(tabletext,
           mean = cochrane_from_rmeta[, c("mean", "mean2")],
           lower = cochrane_from_rmeta[, c("lower", "lower2")],
           upper = cochrane_from_rmeta[, c("upper", "upper2")],
           is.summary = c(TRUE, TRUE, rep(FALSE, 8), TRUE, TRUE),
           fn.ci_norm = norm.arg,
           fn.ci_sum = sum.arg,
           col = fpColors(
             box = c("black", "grey45"),
             lines = c("black", "grey45"),
             summary = "grey30"
           ),
           xlog = TRUE,
           boxsize = c(rep(0.25, 11), 0.125)
)

Try the forestplot package in your browser

Any scripts or data that you put into this service are public.

forestplot documentation built on Oct. 11, 2024, 5:07 p.m.