predict.mfplm.PVS | R Documentation |
predict
method for the multi-functional partial linear model (MFPLM) fitted using PVS.kernel.fit
or PVS.kNN.fit
.
## S3 method for class 'PVS.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)
## S3 method for class 'PVS.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, knearest.n = object$knearest,
min.knn.n = object$min.knn, max.knn.n = object$max.knn.n,
step.n = object$step, ...)
object |
Output of the functions mentioned in the |
newdata.x |
A matrix containing new observations of the functional covariate in the functional nonparametric component, collected by row. |
newdata.z |
Matrix containing the new observations of the scalar covariates derived from the discretisation of a curve, collected by row. |
y.test |
(optional) A vector containing the new observations of the response. |
option |
Allows the selection among the choices 1, 2 and 3 for |
... |
Further arguments. |
knearest.n |
Only used for objects |
min.knn.n |
Only used for objects |
max.knn.n |
Only used for objects |
step.n |
Only used for objects |
To obtain the predictions of the response for newdata.x
and newdata.z
, the following options are provided:
If option=1
, we maintain all the estimates (k.opt
or h.opt
and beta.est
) to predict the functional nonparametric component of the model. As we use the estimates of the second step of the algorithm, only the train.2
is used as training sample to predict.
Then, it should be noted that k.opt
or h.opt
may not be suitable to predict the functional nonparametric component of the model.
If option=2
, we maintain beta.est
, while the tuning parameter (h
or k
) is selected again to predict the functional nonparametric component of the model. This selection is performed using the leave-one-out cross-validation (LOOCV) criterion in the associated functional nonparametric model and the complete training sample (i.e. train=c(train.1,train.2)
), obtaining a global selection for h
or k
. As we use the entire training sample (not just a subsample of it), the sample size is modified and, as a consequence, the parameters knearest
, min.knn
, max.knn
, and step
given to the function IASSMR.kNN.fit
may need to be provided again to compute predictions. For that, we add the arguments knearest.n
, min.knn.n
, max.knn.n
and step.mn
.
If option=3
, we maintain only the indexes of the relevant variables selected by the IASSMR. We estimate again the linear coefficients using sfpl.kernel.fit
or sfpl.kNN.fit
, respectively, without penalisation (setting lambda.seq=0
) and using the entire training sample (train=c(train.1,train.2)
). The method provides two predictions (and MSEPs):
a) The prediction associated with option=1
for sfpl.kernel
or sfpl.kNN
class.
b) The prediction associated with option=2
for sfpl.kernel
or sfpl.kNN
class.
(see the documentation of the functions predict.sfpl.kernel
and predict.sfpl.kNN
)
If option=4
(an option only available for the class PVS.kNN
) we maintain beta.est
, while the tuning parameter k
is selected again to predict the functional nonparametric component of the model. This selection is performed using LOOCV criterion in the functional nonparametric model associated and the complete training sample (i.e. train=c(train.1,train.2)
), obtaining a local selection for k
.
The function returns the predicted values of the response (y
) for newdata.x
and newdata.z
. If !is.null(y.test)
, it also provides the mean squared error of prediction (MSEP
) computed as mean((y-y.test)^2)
.
If option=3
, two sets of predictions (and two MSEPs) are provided, corresponding to the items a) and b) mentioned in the section Details.
If is.null(newdata.x)
or is.null(newdata.z)
, then the function returns the fitted values.
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
PVS.kernel.fit
, sfpl.kernel.fit
and predict.sfpl.kernel
or PVS.kNN.fit
,
sfpl.kNN.fit
and predict.sfpl.kNN
.
data(Sugar)
y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240
#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]
#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]
train<-1:216
test<-217:266
#Fit
fit.kernel<- PVS.kernel.fit(x=x.sug[train,],z=z.sug[train,],
y=y.sug[train],train.1=1:108,train.2=109:216,
lambda.min.h=0.03,lambda.min.l=0.03,
max.q.h=0.35, nknot=20,criterion="BIC",
max.iter=5000)
fit.kNN<- PVS.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
train.1=1:108,train.2=109:216,lambda.min.h=0.07,
lambda.min.l=0.07, nknot=20,criterion="BIC",
max.iter=5000)
#Preditions
predict(fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
predict(fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.