print.summary.mfplsim | R Documentation |
summary
and print
functions for FASSMR.kernel.fit
, FASSMR.kNN.fit
, IASSMR.kernel.fit
and IASSMR.kNN.fit
.
## S3 method for class 'FASSMR.kernel'
print(x, ...)
## S3 method for class 'FASSMR.kNN'
print(x, ...)
## S3 method for class 'IASSMR.kernel'
print(x, ...)
## S3 method for class 'IASSMR.kNN'
print(x, ...)
## S3 method for class 'FASSMR.kernel'
summary(object, ...)
## S3 method for class 'FASSMR.kNN'
summary(object, ...)
## S3 method for class 'IASSMR.kernel'
summary(object, ...)
## S3 method for class 'IASSMR.kNN'
summary(object, ...)
x |
Output of the |
... |
Further arguments passed to or from other methods. |
object |
Output of the |
The matched call.
The optimal value of the tunning parameter (h.opt
or k.opt
).
The optimal initial number of covariates to build the reduced model (w.opt
).
Coefficients of \hat{\theta}
in the B-spline basis (theta.est
): a vector of length(order.Bspline+nknot.theta).
The estimated vector of linear coefficients (beta.est
).
The number of non-zero components in beta.est
.
The indexes of the non-zero components in beta.est
.
The optimal value of the penalisation parameter (lambda.opt
).
The optimal value of the criterion function, i.e. the value obtained with w.opt
, lambda.opt
, vn.opt
and h.opt
/k.opt
Minimum value of the penalised least-squares function. That is, the value obtained using theta.est
, beta.est
and lambda.opt
.
The penalty function used.
The criterion used to select the number of covariates employed to construct the reduced model, the tuning parameter, the penalisation parameter and vn
.
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
FASSMR.kernel.fit
, FASSMR.kNN.fit
, IASSMR.kernel.fit
and IASSMR.kNN.fit
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.