print.summary.sfplsim | R Documentation |
summary
and print
functions for sfplsim.kNN.fit
and sfplsim.kernel.fit
.
## S3 method for class 'sfplsim.kernel'
print(x, ...)
## S3 method for class 'sfplsim.kNN'
print(x, ...)
## S3 method for class 'sfplsim.kernel'
summary(object, ...)
## S3 method for class 'sfplsim.kNN'
summary(object, ...)
x |
Output of the |
... |
Further arguments. |
object |
Output of the |
The matched call.
The optimal value of the tunning parameter (h.opt
or k.opt
).
Coefficients of \hat{\theta}
in the B-spline basis (theta.est
): a vector of length(order.Bspline+nknot.theta).
The estimated vector of linear coefficients (beta.est
).
The number of non-zero components in beta.est
.
The indexes of the non-zero components in beta.est
.
The optimal value of the penalisation parameter (lambda.opt
).
The optimal value of the criterion function, i.e. the value obtained with lambda.opt
, vn.opt
and h.opt
/k.opt
Minimum value of the penalised least-squares function. That is, the value obtained using theta.est
, beta.est
and lambda.opt
.
The penalty function used.
The criterion used to select the tuning parameter, the penalisation parameter and vn
.
The optimal value of vn
.
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
sfplsim.kernel.fit
and sfplsim.kNN.fit
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.