print.summary.mfpl | R Documentation |
summary
and print
functions for PVS.kernel.fit
and PVS.kNN.fit
.
## S3 method for class 'PVS.kernel'
print(x, ...)
## S3 method for class 'PVS.kNN'
print(x, ...)
## S3 method for class 'PVS.kernel'
summary(object, ...)
## S3 method for class 'PVS.kNN'
summary(object, ...)
x |
Output of the |
... |
Further arguments. |
object |
Output of the |
The matched call.
The optimal value of the tunning parameter (h.opt
or k.opt
).
The optimal initial number of covariates to build the reduced model (w.opt
).
The estimated vector of linear coefficients (beta.est
).
The number of non-zero components in beta.est
.
The indexes of the non-zero components in beta.est
.
The optimal value of the penalisation parameter (lambda.opt
).
The optimal value of the criterion function, i.e. the value obtained with w.opt
, lambda.opt
, vn.opt
and h.opt
/k.opt
Minimum value of the penalised least-squares function. That is, the value obtained using beta.est
and lambda.opt
.
The penalty function used.
The criterion used to select the number of covariates employed to construct the reduced model, the tuning parameter, the penalisation parameter and vn
.
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
PVS.kernel.fit
and PVS.kNN.fit
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.