R/CoDa_recon.R

Defines functions CoDa_recon

CoDa_recon <-
function(dat, normalize = c("TRUE", "FALSE"),
                       fore_method = c("RWF", "ETS", "ARIMA"), drift_term,
                       fh, varprop, constant)
{
    fore_method = match.arg(fore_method)
    n_year = nrow(dat)
    n_age = ncol(dat)

    # standardize life table death to sum to 1

    dat_center = sweep(dat, 1, apply(dat, 1, sum), "/")

    # geometric mean

    alpha_x = vector("numeric", n_age)
    for(ik in 1:n_age)
    {
        alpha_x[ik] = geometric.mean(dat_center[,ik])
    }

    # standardization (closure operation)

    f_x_t = matrix(NA, n_year, n_age)
    if(normalize == TRUE)
    {
        for(ik in 1:n_year)
        {
            f_x_t[ik,] = (dat[ik,]/alpha_x)/sum(dat[ik,]/alpha_x)
        }
    }
    if(normalize == FALSE)
    {
        for(ik in 1:n_year)
        {
            f_x_t[ik,] = dat[ik,]/alpha_x
        }
    }

    # geometric mean and log-ratio transformation

    g_t = vector("numeric", n_year)
    h_x_t = matrix(NA, n_year, n_age)
    if(normalize == TRUE)
    {
        for(ik in 1:n_year)
        {
            g_t[ik] = geometric.mean(f_x_t[ik,])
            h_x_t[ik,] = log(f_x_t[ik,]/g_t[ik])
        }
    }
    if(normalize == FALSE)
    {
        for(ik in 1:n_year)
        {
            h_x_t[ik,] = log(f_x_t[ik,])
        }
    }

    # singular value decomposition

    SVD_decomp = svd(h_x_t)
    ncomp = head(which(cumsum(SVD_decomp$d^2/sum(SVD_decomp$d^2))>=varprop), 1)
    basis_fore = basis = SVD_decomp$v[,1:ncomp]
    score_forecast = score = t(basis) %*% t(h_x_t)

    # reconstruction of historical data

    recon = basis %*% score
    f_x_t_star_recon = d_x_t_star_recon = matrix(NA, n_age, n_year)
    for(ik in 1:n_year)
    {
        f_x_t_star_recon[,ik] = exp(recon[,ik])/sum(exp(recon[,ik]))
        d_x_t_star_recon[,ik] = (f_x_t_star_recon[,ik] * alpha_x)/sum(f_x_t_star_recon[,ik] * alpha_x)
    }

    # forecast scores

    score_fore = matrix(NA, ncomp, fh)
    for(ik in 1:ncomp)
    {
        if(fore_method == "ARIMA")
        {
            score_fore[ik,] = forecast(auto.arima(as.numeric(score_forecast[ik,])), h = fh)$mean
        }
        if(fore_method == "ETS")
        {
            score_fore[ik,] = forecast(ets(as.numeric(score_forecast[ik,])), h = fh)$mean
        }
        if(fore_method == "RWF")
        {
            score_fore[ik,] = rwf(as.numeric(score_forecast[ik,]), h = fh, drift = drift_term)$mean
        }
    }
    fore_val = basis_fore %*% score_fore

    f_x_t_star_fore = d_x_t_star_fore = matrix(NA, n_age, fh)
    for(ik in 1:fh)
    {
        f_x_t_star_fore[,ik] = exp(fore_val[,ik])/sum(exp(fore_val[,ik]))
        d_x_t_star_fore[,ik] = (f_x_t_star_fore[,ik] * alpha_x)/sum((f_x_t_star_fore[,ik] * alpha_x))
    }
    return(list(d_x_t_star_recon = d_x_t_star_recon * constant, d_x_t_star_fore = d_x_t_star_fore * constant))
}

Try the ftsa package in your browser

Any scripts or data that you put into this service are public.

ftsa documentation built on May 29, 2024, 2:47 a.m.