R/forecast.ftsm2.R

forecast.ftsm2 <- function (object, h = 50, method = c("arima", "ar", "ets", "ets.na",
"struct", "rwdrift", "rw"), level = 80, jumpchoice = c("fit", "actual"), usedata = nrow(object$coeff),
adjust = TRUE, model = NULL, damped = NULL, stationary = FALSE, ...)
{
    method <- match.arg(method)
    jumpchoice <- match.arg(jumpchoice)
    if (jumpchoice == "actual") {
        var.col <- apply(object$coeff, 2, var)
        idx <- order(var.col)[1]
        if (var.col[idx] > 1e-08)
        stop("No mean function fitted. So jumpchoice cannot be 'actual'")
        trueval <- object$fitted$y + object$residuals$y
        n <- ncol(trueval)
        object$basis[, idx] <- trueval[, n]
        for (i in 1:ncol(object$basis)) {
            if (i != idx)
            object$coeff[, i] <- object$coeff[, i] - object$coeff[n,
            i]
        }
    }
    else if (jumpchoice != "fit")
    stop("Unknown jump choice")
    nb <- ncol(object$basis)
    l <- nrow(object$coeff)
    if (method == "ar")
    stationary <- TRUE
    if (any(stationary) == TRUE)
    method = "arima"
    meanfcast <- varfcast <- matrix(NA, nrow = h, ncol = nb)
    obs <- fitted <- matrix(NA, nrow = l, ncol = nb)
    qconf <- qnorm(0.5 + level/200)
    usedata <- min(usedata, l)
    ytsp <- tsp(object$coeff)
    x <- xx <- ts(as.matrix(object$coeff[(l - usedata + 1):l,
    ]), start = ytsp[1] + l - usedata, frequency = ytsp[3])
    xx[object$weights[(l - usedata + 1):l] < 0.1, ] <- NA
    fmodels <- list()
    if (method == "ets") {
        if (is.null(model))
        model <- rep("ZZZ", nb)
        else if (length(model) == 1)
        model <- c("ANN", rep(model, nb))
        else if (length(model) == nb - 1)
        model <- c("ANN", model)
        else stop("Length of model does not match number of coefficients")
        if (!is.null(damped)) {
            if (length(damped) == 1)
            damped <- c(FALSE, rep(damped, nb))
            else if (length(damped) == nb - 1)
            damped <- c(FALSE, damped)
            else stop("Length of damped does not match number of coefficients")
        }
        for (i in 1:nb) {
            if (!is.null(damped))
            fmodels[[i]] <- ets(x[, i], model = model[i],
            damped = damped[i], ...)
            else fmodels[[i]] <- ets(x[, i], model = model[i],
            ...)
            pegelsfit <- forecast(fmodels[[i]], h = h, level = level)
            meanfcast[, i] <- pegelsfit$mean
            varfcast[, i] <- ((pegelsfit$upper[, 1] - pegelsfit$lower[,
            1])/(2 * qconf[1]))^2
            fitted[, i] <- pegelsfit$fitted
        }
    }
    else if (method == "ets.na") {
        for (i in 1:nb) {
            pegelsfit <- pegelsna(xx[, i])
            fmodels[[i]] <- pegelsfit
            meanfcast[, i] <- pegelsfit$mean
            varfcast[, i] <- ((pegelsfit$upper[, 1] - pegelsfit$lower[,
            1])/(2 * qconf[1]))^2
            fitted[, i] <- pegelsfit$fitted
        }
    }
    else if (method == "arima") {
        if (length(stationary) == 1)
        stationary <- c(TRUE, rep(stationary, nb))
        else if (length(stationary) == nb - 1)
        stationary <- c(TRUE, stationary)
        else stop("Length of stationary does not match number of coefficients")
        for (i in 1:nb) {
            if (var(xx[, i], na.rm = TRUE) < 1e-08) {
                cc <- mean(xx[, i], na.rm = TRUE)
                fmodels[[i]] <- list("Constant", cc)
                meanfcast[, i] <- rep(cc, h)
                varfcast[, i] <- rep(0, h)
                fitted[, i] <- rep(cc, length(xx[, i]))
            }
            else {
                barima <- auto.arima(xx[,i],stationary=stationary[i],...)
                fitted[,i] <- fitted(barima)
                pred <- forecast(barima,h=h,level=level)
                fmodels[[i]] <- pred
                meanfcast[,i] <- pred$mean
                varfcast[,i] <- ((pred$upper[,1]-pred$lower[,1])/(2*qconf[1]))^2
            }
        }
    }
    else if (method == "rwdrift") {
        for (i in 1:nb) {
            if(var(xx[,i],na.rm=TRUE) < 1e-8)
            {
                cc <- mean(xx[,i],na.rm=TRUE)
                fmodels[[i]] <- list("Constant",cc)
                meanfcast[,i] <- rep(cc,h)
                varfcast[,i] <- rep(0,h)
                fitted[,i] <- rep(cc,length(xx[,i]))
            }
            else
            {
                barima <-  Arima(xx[,i], order = c(0,1,0), include.drift = TRUE)
                fitted[,i] <- fitted(barima)
                pred <- forecast(barima,h=h,level=level)
                fmodels[[i]] <- pred
                meanfcast[,i] <- pred$mean
                varfcast[,i] <- ((pred$upper[,1]-pred$lower[,1])/(2*qconf[1]))^2
            }
        }
    }
    else if (method == "rw") {
        for (i in 1:nb) {
            if(var(xx[,i],na.rm=TRUE) < 1e-8)
            {
                cc <- mean(xx[,i],na.rm=TRUE)
                fmodels[[i]] <- list("Constant",cc)
                meanfcast[,i] <- rep(cc,h)
                varfcast[,i] <- rep(0,h)
                fitted[,i] <- rep(cc,length(xx[,i]))
            }
            else
            {
                barima <-  Arima(xx[,i], order = c(0,1,0), include.drift = FALSE)
                fitted[,i] <- fitted(barima)
                pred <- forecast(barima,h=h,level=level)
                fmodels[[i]] <- pred
                meanfcast[,i] <- pred$mean
                varfcast[,i] <- ((pred$upper[,1]-pred$lower[,1])/(2*qconf[1]))^2
            }
        }
    }
    else if (method == "struct") {
        if (var(xx[, i], na.rm = TRUE) < 1e-08) {
            cc <- mean(xx[, i], na.rm = TRUE)
            meanfcast[, i] <- rep(cc, h)
            varfcast[, i] <- rep(0, h)
            fitted[, i] <- rep(cc, length(xx[, i]))
        }
        else {
            for (i in 1:nb) {
                fitStruct <- struct.forecast(xx[, i], h = h,
                level = level, ...)
                meanfcast[, i] <- fitStruct$mean
                varfcast[, i] <- fitStruct$var
                fitted[, i] <- fitStruct$fitted
            }
        }
    }
    else stop("Unknown method")
    ytsp <- tsp(object$fitted$time)
    error <- ts(object$coeff - fitted, start = ytsp[1], frequency = ytsp[3])
    ferror <- onestepfcast <- object$y
    onestepfcast$y <- object$basis %*% t(fitted)
    onestepfcast$yname <- "One step forecasts"
    ferror$y <- object$y$y - onestepfcast$y
    ferror$yname <- "One step errors"
    fmean <- fts(object$y$x, object$basis %*% t(meanfcast), start = ytsp[2] +
    1, frequency = ytsp[3], xname = object$y$xname, yname = "Forecasts")
    res <- object$residuals
    res$y <- res$y^2
    vx <- rowMeans(res$y, na.rm = TRUE)
    modelvar <- object$basis^2 %*% t(varfcast)
    totalvar <- sweep(modelvar, 1, vx + object$mean.se^2, "+")
    if (adjust & nb > 1) {
        adj.factor <- rowMeans(ferror$y^2, na.rm = TRUE)/totalvar[,
        1]
        totalvar <- sweep(totalvar, 1, adj.factor, "*")
    }
    else adj.factor <- 1
    if (length(qconf) > 1)
    stop("Multiple confidence levels not yet implemented")
    tmp <- qconf * sqrt(totalvar)
    flower <- fts(object$y$x, fmean$y - tmp, start = ytsp[2] + 1,
    frequency = ytsp[3], xname = object$y$xname, yname = "Forecast lower limit")
    fupper <- fts(object$y$x, fmean$y + tmp, start = ytsp[2] + 1,
    frequency = ytsp[3], xname = object$y$xname, yname = "Forecast upper limit")
    coeff <- list()
    for (i in 1:nb) {
        coeff[[i]] <- structure(list(mean = ts(meanfcast[, i],
        start = ytsp[2] + 1, frequency = ytsp[3]), lower = ts(meanfcast[,
        i] - qconf * sqrt(varfcast[, i]), start = ytsp[2] + 1,
        frequency = ytsp[3]), upper = ts(meanfcast[, i] + qconf *
        sqrt(varfcast[, i]), start = ytsp[2] + 1, frequency = ytsp[3]),
        level = level, x = x[, i], method = method, model = fmodels[[i]]),
        class = "forecast")
    }
    names(coeff) <- paste("Basis", 1:nb)
    return(structure(list(mean = fmean, lower = flower, upper = fupper,
    fitted = onestepfcast, error = ferror, coeff = coeff,
    coeff.error = error, var = list(model = modelvar, error = vx,
    mean = object$mean.se^2, total = totalvar, coeff = varfcast,
    adj.factor = adj.factor), model = object), class = "ftsf"))
}

Try the ftsa package in your browser

Any scripts or data that you put into this service are public.

ftsa documentation built on May 29, 2024, 2:47 a.m.