Nothing
forecast.ftsm2 <- function (object, h = 50, method = c("arima", "ar", "ets", "ets.na",
"struct", "rwdrift", "rw"), level = 80, jumpchoice = c("fit", "actual"), usedata = nrow(object$coeff),
adjust = TRUE, model = NULL, damped = NULL, stationary = FALSE, ...)
{
method <- match.arg(method)
jumpchoice <- match.arg(jumpchoice)
if (jumpchoice == "actual") {
var.col <- apply(object$coeff, 2, var)
idx <- order(var.col)[1]
if (var.col[idx] > 1e-08)
stop("No mean function fitted. So jumpchoice cannot be 'actual'")
trueval <- object$fitted$y + object$residuals$y
n <- ncol(trueval)
object$basis[, idx] <- trueval[, n]
for (i in 1:ncol(object$basis)) {
if (i != idx)
object$coeff[, i] <- object$coeff[, i] - object$coeff[n,
i]
}
}
else if (jumpchoice != "fit")
stop("Unknown jump choice")
nb <- ncol(object$basis)
l <- nrow(object$coeff)
if (method == "ar")
stationary <- TRUE
if (any(stationary) == TRUE)
method = "arima"
meanfcast <- varfcast <- matrix(NA, nrow = h, ncol = nb)
obs <- fitted <- matrix(NA, nrow = l, ncol = nb)
qconf <- qnorm(0.5 + level/200)
usedata <- min(usedata, l)
ytsp <- tsp(object$coeff)
x <- xx <- ts(as.matrix(object$coeff[(l - usedata + 1):l,
]), start = ytsp[1] + l - usedata, frequency = ytsp[3])
xx[object$weights[(l - usedata + 1):l] < 0.1, ] <- NA
fmodels <- list()
if (method == "ets") {
if (is.null(model))
model <- rep("ZZZ", nb)
else if (length(model) == 1)
model <- c("ANN", rep(model, nb))
else if (length(model) == nb - 1)
model <- c("ANN", model)
else stop("Length of model does not match number of coefficients")
if (!is.null(damped)) {
if (length(damped) == 1)
damped <- c(FALSE, rep(damped, nb))
else if (length(damped) == nb - 1)
damped <- c(FALSE, damped)
else stop("Length of damped does not match number of coefficients")
}
for (i in 1:nb) {
if (!is.null(damped))
fmodels[[i]] <- ets(x[, i], model = model[i],
damped = damped[i], ...)
else fmodels[[i]] <- ets(x[, i], model = model[i],
...)
pegelsfit <- forecast(fmodels[[i]], h = h, level = level)
meanfcast[, i] <- pegelsfit$mean
varfcast[, i] <- ((pegelsfit$upper[, 1] - pegelsfit$lower[,
1])/(2 * qconf[1]))^2
fitted[, i] <- pegelsfit$fitted
}
}
else if (method == "ets.na") {
for (i in 1:nb) {
pegelsfit <- pegelsna(xx[, i])
fmodels[[i]] <- pegelsfit
meanfcast[, i] <- pegelsfit$mean
varfcast[, i] <- ((pegelsfit$upper[, 1] - pegelsfit$lower[,
1])/(2 * qconf[1]))^2
fitted[, i] <- pegelsfit$fitted
}
}
else if (method == "arima") {
if (length(stationary) == 1)
stationary <- c(TRUE, rep(stationary, nb))
else if (length(stationary) == nb - 1)
stationary <- c(TRUE, stationary)
else stop("Length of stationary does not match number of coefficients")
for (i in 1:nb) {
if (var(xx[, i], na.rm = TRUE) < 1e-08) {
cc <- mean(xx[, i], na.rm = TRUE)
fmodels[[i]] <- list("Constant", cc)
meanfcast[, i] <- rep(cc, h)
varfcast[, i] <- rep(0, h)
fitted[, i] <- rep(cc, length(xx[, i]))
}
else {
barima <- auto.arima(xx[,i],stationary=stationary[i],...)
fitted[,i] <- fitted(barima)
pred <- forecast(barima,h=h,level=level)
fmodels[[i]] <- pred
meanfcast[,i] <- pred$mean
varfcast[,i] <- ((pred$upper[,1]-pred$lower[,1])/(2*qconf[1]))^2
}
}
}
else if (method == "rwdrift") {
for (i in 1:nb) {
if(var(xx[,i],na.rm=TRUE) < 1e-8)
{
cc <- mean(xx[,i],na.rm=TRUE)
fmodels[[i]] <- list("Constant",cc)
meanfcast[,i] <- rep(cc,h)
varfcast[,i] <- rep(0,h)
fitted[,i] <- rep(cc,length(xx[,i]))
}
else
{
barima <- Arima(xx[,i], order = c(0,1,0), include.drift = TRUE)
fitted[,i] <- fitted(barima)
pred <- forecast(barima,h=h,level=level)
fmodels[[i]] <- pred
meanfcast[,i] <- pred$mean
varfcast[,i] <- ((pred$upper[,1]-pred$lower[,1])/(2*qconf[1]))^2
}
}
}
else if (method == "rw") {
for (i in 1:nb) {
if(var(xx[,i],na.rm=TRUE) < 1e-8)
{
cc <- mean(xx[,i],na.rm=TRUE)
fmodels[[i]] <- list("Constant",cc)
meanfcast[,i] <- rep(cc,h)
varfcast[,i] <- rep(0,h)
fitted[,i] <- rep(cc,length(xx[,i]))
}
else
{
barima <- Arima(xx[,i], order = c(0,1,0), include.drift = FALSE)
fitted[,i] <- fitted(barima)
pred <- forecast(barima,h=h,level=level)
fmodels[[i]] <- pred
meanfcast[,i] <- pred$mean
varfcast[,i] <- ((pred$upper[,1]-pred$lower[,1])/(2*qconf[1]))^2
}
}
}
else if (method == "struct") {
if (var(xx[, i], na.rm = TRUE) < 1e-08) {
cc <- mean(xx[, i], na.rm = TRUE)
meanfcast[, i] <- rep(cc, h)
varfcast[, i] <- rep(0, h)
fitted[, i] <- rep(cc, length(xx[, i]))
}
else {
for (i in 1:nb) {
fitStruct <- struct.forecast(xx[, i], h = h,
level = level, ...)
meanfcast[, i] <- fitStruct$mean
varfcast[, i] <- fitStruct$var
fitted[, i] <- fitStruct$fitted
}
}
}
else stop("Unknown method")
ytsp <- tsp(object$fitted$time)
error <- ts(object$coeff - fitted, start = ytsp[1], frequency = ytsp[3])
ferror <- onestepfcast <- object$y
onestepfcast$y <- object$basis %*% t(fitted)
onestepfcast$yname <- "One step forecasts"
ferror$y <- object$y$y - onestepfcast$y
ferror$yname <- "One step errors"
fmean <- fts(object$y$x, object$basis %*% t(meanfcast), start = ytsp[2] +
1, frequency = ytsp[3], xname = object$y$xname, yname = "Forecasts")
res <- object$residuals
res$y <- res$y^2
vx <- rowMeans(res$y, na.rm = TRUE)
modelvar <- object$basis^2 %*% t(varfcast)
totalvar <- sweep(modelvar, 1, vx + object$mean.se^2, "+")
if (adjust & nb > 1) {
adj.factor <- rowMeans(ferror$y^2, na.rm = TRUE)/totalvar[,
1]
totalvar <- sweep(totalvar, 1, adj.factor, "*")
}
else adj.factor <- 1
if (length(qconf) > 1)
stop("Multiple confidence levels not yet implemented")
tmp <- qconf * sqrt(totalvar)
flower <- fts(object$y$x, fmean$y - tmp, start = ytsp[2] + 1,
frequency = ytsp[3], xname = object$y$xname, yname = "Forecast lower limit")
fupper <- fts(object$y$x, fmean$y + tmp, start = ytsp[2] + 1,
frequency = ytsp[3], xname = object$y$xname, yname = "Forecast upper limit")
coeff <- list()
for (i in 1:nb) {
coeff[[i]] <- structure(list(mean = ts(meanfcast[, i],
start = ytsp[2] + 1, frequency = ytsp[3]), lower = ts(meanfcast[,
i] - qconf * sqrt(varfcast[, i]), start = ytsp[2] + 1,
frequency = ytsp[3]), upper = ts(meanfcast[, i] + qconf *
sqrt(varfcast[, i]), start = ytsp[2] + 1, frequency = ytsp[3]),
level = level, x = x[, i], method = method, model = fmodels[[i]]),
class = "forecast")
}
names(coeff) <- paste("Basis", 1:nb)
return(structure(list(mean = fmean, lower = flower, upper = fupper,
fitted = onestepfcast, error = ferror, coeff = coeff,
coeff.error = error, var = list(model = modelvar, error = vx,
mean = object$mean.se^2, total = totalvar, coeff = varfcast,
adj.factor = adj.factor), model = object), class = "ftsf"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.