Nothing
nipals <- function (Xtrain, Ytrain, Xtest = NULL, ncomp, tol = .Machine$double.eps^0.5,
weight = TRUE, beta = 0.1, ...)
{
Ytrain = as.matrix(Ytrain)
n = dim(Xtrain)[1]
p = dim(Xtrain)[2]
m = dim(Ytrain)[2]
R = P = matrix(, nrow = p, ncol = ncomp)
Q = matrix(, nrow = ncomp, ncol = m)
B = array(, dim = c(p, m, ncomp))
T = U = matrix(, nrow = n, ncol = ncomp)
tsqs = numeric(ncomp)
fitted = residuals = array(, dim = c(n, m, ncomp))
Ypred = array(, dim = c(dim(Xtest)[1], m, length(ncomp)))
meanX = colMeans(Xtrain)
X = Xtrain - rep(meanX, each = n)
meanY = colMeans(Ytrain)
Y = Ytrain - rep(meanY, each = n)
if (weight == TRUE){
wq = matrix(,n,1)
for(i in 1:n){
wq[i,] = beta*(1-beta)^(i-1)
}
weig = diag(rev(wq))
X = weig%*%X
Y = weig%*%as.matrix(Y)
}
Xtotvar = sum(Xtrain * Xtrain)
for (a in 1:ncomp) {
if (m == 1) {
u = Y
}
else {
u = Y[, which.max(colSums(Y * Y))]
t.old = 0
}
repeat {
r = crossprod(X, u)
r = r/sqrt(c(crossprod(r)))
t = X %*% r
tsq = c(crossprod(t))
t.t = t/tsq
q = crossprod(Y, t.t)
if (m == 1)
break
if (sum(abs((t - t.old)/t), na.rm = T) < tol)
break
else {
u = Y %*% q/c(crossprod(q))
t.old = t
}
}
p = crossprod(X, t.t)
X = X - t %*% t(p)
Y = Y - t %*% t(q)
R[, a] = r
P[, a] = p
Q[a, ] = q
T[, a] = t
U[, a] = u
tsqs[a] = tsq
fitted[, , a] = T[, 1:a] %*% Q[1:a, , drop = FALSE]
residuals[, , a] = Y
}
if (ncomp == 1) {
W = R
}
else {
PR = crossprod(P, R)
if (m == 1) {
PRinv = diag(ncomp)
bidiag = -PR[row(PR) == col(PR) - 1]
for (a in 1:(ncomp - 1)) {
PRinv[a, (a + 1):ncomp] = cumprod(bidiag[a:(ncomp -
1)])
}
}
else {
PRinv = backsolve(PR, diag(ncomp))
}
W = R %*% PRinv
}
for (a in 1:ncomp) {
B[, , a] = W[, 1:a, drop = FALSE] %*% Q[1:a, , drop = FALSE]
}
if (!is.null(Xtest)) {
Xtest = scale(t(Xtest), scale = FALSE, center = meanX)
Ypred = Xtest %*% B[, , length(ncomp)] + meanY
}
fitted = fitted + rep(meanY, each = n)
class(T) = class(U) = "scores"
class(P) = class(R) = class(Q) = "loadings"
if (!is.null(Xtest)) {
if (weight==TRUE){
list(B = B, Ypred = Ypred, P = P, Q = t(Q), T = T, R = R,
meanX = meanX, meanY = meanY, Yscores = U, projection = W,
fitted.values = fitted, residuals = residuals,
Xvar = colSums(P * P) * tsqs, Xtotvar = Xtotvar, weight = wq)
}
else
list(B = B, Ypred = Ypred, P = P, Q = t(Q), T = T, R = R,
meanX = meanX, meanY = meanY, Yscores = U, projection = W,
fitted.values = fitted, residuals = residuals,
Xvar = colSums(P * P) * tsqs, Xtotvar = Xtotvar)
}
else {
if (weight==TRUE){
list(B = B, P = P, Q = t(Q), T = T, R = R, meanX = meanX,
meanY = meanY, Yscores = U, projection = W, fitted.values = fitted,
residuals = residuals, Xvar = colSums(P * P) * tsqs,
Xtotvar = Xtotvar, weight = wq)
}
else
list(B = B, P = P, Q = t(Q), T = T, R = R, meanX = meanX,
meanY = meanY, Yscores = U, projection = W, fitted.values = fitted,
residuals = residuals, Xvar = colSums(P * P) * tsqs,
Xtotvar = Xtotvar)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.