R/Target.R

#' @title Target Class
#'
#' @description
#' This class implements the target object. A [Target] object can only
#' exist as a component of a [Training] object.
#'
#' @export
#'
#' @importFrom R6 R6Class
#' @seealso [TrainLayer], [Lrner], [Model], [TestData]
Target <- R6Class("Target",
                  inherit = Data,
                  public = list(
                    #' @description
                    #' Initialize a new object from the current class.
                    #'
                    #' @param id `character` \cr
                    #' The Object ID.
                    #' @param data_frame `data.frame`\cr
                    #' \code{data.frame} containing data.
                    #' @param training `Training` \cr
                    #' Training where to store the current object.
                    initialize = function (id,
                                           data_frame,
                                           training) {
                      if (!any(c("Training") %in% class(training))) {
                        # nocov start
                        stop("A Target can belong only to a Training object.\n")
                        # nocov end
                      }
                      ind_col = training$getIndCol()
                      target = training$getTarget()
                      if (!all(c(ind_col, target) %in% colnames(data_frame))) {
                        # nocov start
                        stop("Individual column ID or target variable not found in the provided data.frame.\n")
                        # nocov end
                      }
                      if (training$checkTargetExist()) {
                        # Remove TrainData if already existing
                        # nocov start
                        key_class = train_layer$getKeyClass()
                        key = key_class[key_class$class == "Target", "key"]
                        training$removeFromHashTable(key = key)
                        # nocov end
                      }
                      private$training = training
                      missing_target = is.na(data_frame[ , target])
                      if (any(missing_target)) {
                        # nocov start
                        data_frame = data_frame[!missing_target, ]
                        # nocov end
                      }
                      missing_id = is.na(data_frame[ , ind_col])
                      if (any(missing_id)) {
                        # nocov start
                        data_frame = data_frame[!missing_id, ]
                        # nocov end
                      }
                      super$initialize(id = id,
                                       ind_col = training$getIndCol(),
                                       data_frame = data_frame)
                      private$target = training$getTarget()
                      # Add object to ht
                      training$add2HashTable(key = private$id,
                                             value = self,
                                             .class = "Target")
                      if (any(missing_target)) {
                        # nocov start
                        warning(sprintf("%s individual(s) with missing target value(s) recognized and removed.\n",
                                        sum(missing_target)))
                        # nocov end
                      }
                      if (any(missing_id)) {
                        # nocov start
                        warning(sprintf("%s individual(s) with missing ID value(s) recognized and removed.\n",
                                        sum(missing_id)))
                        # nocov end
                      }
                    },
                    #' @description
                    #' Printer
                    #' @param ... `any`
                    #'
                    # nocov start
                    print = function (...) {
                      cat(sprintf("Training  : %s\n", private$training$getId()))
                      cat(sprintf("ind. id.  : %s\n", private$ind_col))
                      cat(sprintf("target    : %s\n", private$target))
                      cat(sprintf("n         : %s\n", nrow(private$data_frame)))
                      cat(sprintf("Missing   : %s\n", sum(!complete.cases(private$data_frame))))
                    },
                    # nocov end
                    #' @description
                    #' Summary
                    #' @param ... `any`
                    #'
                    # nocov start
                    summary = function (...) {
                      cat(sprintf("      Layer     : %s\n", private$training$getId()))
                      cat(sprintf("      Ind. id.  : %s\n", private$ind_col))
                      cat(sprintf("      Target    : %s\n", private$target))
                      cat(sprintf("      n         : %s\n", nrow(private$data_frame)))
                      cat(sprintf("      Missing   : %s\n", sum(!complete.cases(private$data_frame))))
                    },
                    # nocov end
                    #' @description
                    #' Getter of the current \code{data.frame} wihtout individual
                    #' ID nor target variables.
                    #'
                    #' @return
                    #' The \code{data.frame} without individual ID nor target variables is returned.
                    #'
                    # nocov start
                    getData = function () {
                      return(private$data_frame)
                    },
                    # # nocov end
                    #' @description
                    #' Getter of target values stored on the current training layer.
                    #'
                    #' @return
                    #' The observed target values stored on the current training layer are returned.
                    #' @export
                    #'
                    # nocov start
                    getTargetValues = function () {
                      return(private$data_frame[[private$target]])
                    },
                    # nocov end
                    #' @description
                    #' Getter of the target variable name.
                    #'
                    #' @export
                    #'
                    getTargetName = function () {
                      # nocov start
                      return(private$target)
                      # nocov end
                    },
                    #' @description
                    #' Getter of the current training object.
                    #'
                    #' @return
                    #' The training layer (from class [Training]) on which the current train data are stored
                    #' is returned.
                    #' @export
                    #'
                    getTraining = function () {
                      # nocov start
                      return(private$training)
                      # nocov end
                    },
                    # nocov end
                    #' @description
                    #' Getter of the current \code{data.frame} wihtout individual
                    #' ID nor target variables.
                    #' @param data_frame `data.frame` \cr
                    #' data.frame to be set.
                    #'
                    # nocov start
                    #' Title
                    #'
                    setData = function (data_frame) {
                      private$data_frame = data_frame
                      invisible(self)
                    }
                  ),
                  private = list(
                    target = character(0L),
                    training = NULL
                  ),
                  cloneable = TRUE
)

Try the fuseMLR package in your browser

Any scripts or data that you put into this service are public.

fuseMLR documentation built on April 3, 2025, 8:49 p.m.