Description Usage Arguments Details Value Author(s) References Examples
Estimates the statistical ultimatum game described in Ramsay and Signorino (2009), illustrated below in "Details".
1 2 3 4 |
formulas |
a list of two formulas, or a |
data |
data frame containing the variables in the model. |
subset |
optional logical expression specifying which observations from
|
na.action |
how to deal with |
minOffer |
numeric: the lowest offer Player 1 could feasibly make (default 0). |
maxOffer |
numeric: the highest offer Player 1 could feasibly make. |
offertol |
numeric: offers within |
s1 |
numeric: scale parameter for Player 1. If |
s2 |
numeric: scale parameter for Player 2. If |
outcome |
the outcome of interest: just Player 1's offer ("offer") or both the offer and its acceptance ("both"). See "Details". |
boot |
integer: number of bootstrap iterations to perform (if any). |
bootreport |
logical: whether to print status bar when performing bootstrap iterations. |
profile |
output from running |
method |
character string specifying which optimization routine to use
(see |
... |
other arguments to pass to the fitting function (see
|
reltol |
numeric: relative convergence tolerance level (see
|
The model corresponds to the following extensive-form game, described in Ramsay and Signorino (2009):
1 2 3 4 5 6 7 8 9 10 11 12 | . 1
. / \
. / \
. / \ y in [0, Q]
. / \
. ---------
. /\ 2
. / \
. / \
. / \
. Q - y R1
. y R2
|
Q refers to the maximum feasible offer (the argument maxOffer
).
The two equations on the right-hand side of formulas
refer to Player
1's and Player 2's reservation values respectively. The left-hand side
should take the form offer + acceptance
, where outcome
contains the numeric value of the offer made and acceptance
is an
indicator for whether it was accepted. (If outcome
is set to
"offer", the acceptance indicator can be omitted. See below for more.)
The outcome
argument refers to whether the outcome of interest is
just the level of the offer made, or both the level of the offer and whether
it was accepted. If acceptance was unobserved, then outcome
should
be set to "offer". If so, the estimates for Player 2's reservation value
should be interpreted as Player 1's expectations about these parameters. It
may also be useful to set outcome
to "offer" even if acceptance data
are available, for the purpose of comparing the strategic model to other
models of offer levels (as in Ramsay and Signorino 2009). If an acceptance
variable is specified but outcome
is set to "offer", the acceptance
data will be used for starting values but not in the actual fitting.
Numerical instability is not uncommon in the statistical ultimatum game, especially when the scale parameters are being estimated.
An object of class c("game", "ultimatum")
. For details on
the game
class, see egame12
. The ultimatum
class is just for use in the generation of predicted values (see
predProbs
) and profiling (see profile.game
).
Brenton Kenkel (brenton.kenkel@gmail.com) and Curtis S. Signorino
Kristopher W. Ramsay and Curtis S. Signorino. 2009. "A Statistical Model of the Ultimatum Game." Available online at http://www.rochester.edu/college/psc/signorino/research/RamsaySignorino_Ultimatum.pdf.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | data(data_ult)
## Model formula:
f1 <- offer + accept ~ x1 + x2 + x3 + x4 + w1 + w2 | z1 + z2 + z3 + z4 + w1 + w2
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^
## R1 R2
m1 <- ultimatum(f1, data = data_ult, maxOffer = 15)
summary(m1)
## Estimating offer size only
f2 <- update(Formula(f1), offer ~ .)
m2 <- ultimatum(f2, data = data_ult, maxOffer = 15, outcome = "offer")
summary(m2)
## Fixing scale terms
m3 <- ultimatum(f1, data = data_ult, maxOffer = 15, s1 = 5, s2 = 1)
summary(m3)
|
Loading required package: maxLik
Loading required package: miscTools
Please cite the 'maxLik' package as:
Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.
If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
https://r-forge.r-project.org/projects/maxlik/
Loading required package: Formula
Loading required package: MASS
Call:
ultimatum(formulas = f1, data = data_ult, maxOffer = 15)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
R1:(Intercept) 4.935680 0.271317 18.1916 < 2.2e-16 ***
R1:x1 -2.084117 0.233881 -8.9110 < 2.2e-16 ***
R1:x2 2.157339 0.245177 8.7991 < 2.2e-16 ***
R1:x3 -2.143140 0.239486 -8.9489 < 2.2e-16 ***
R1:x4 2.425016 0.246073 9.8549 < 2.2e-16 ***
R1:w1 0.925143 0.248172 3.7278 0.0001931 ***
R1:w2 -1.159481 0.245275 -4.7273 2.276e-06 ***
R2:(Intercept) 9.922120 0.074362 133.4295 < 2.2e-16 ***
R2:z1 2.014166 0.035268 57.1109 < 2.2e-16 ***
R2:z2 -2.002677 0.034820 -57.5153 < 2.2e-16 ***
R2:z3 2.012617 0.036823 54.6568 < 2.2e-16 ***
R2:z4 -1.975276 0.035740 -55.2681 < 2.2e-16 ***
R2:w1 -0.957349 0.033349 -28.7066 < 2.2e-16 ***
R2:w2 1.076263 0.035389 30.4122 < 2.2e-16 ***
log(s1) 1.639778 0.033843 48.4532 < 2.2e-16 ***
log(s2) 0.011430 0.034730 0.3291 0.7420652
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Standard errors estimated from inverse Hessian
Log-likelihood: -3717.679
AIC: 7467.358
No. observations: 1500
Call:
ultimatum(formulas = f2, data = data_ult, maxOffer = 15, outcome = "offer")
Coefficients:
Estimate Std. Error z value Pr(>|z|)
R1:(Intercept) 4.808428 0.337870 14.2316 < 2.2e-16 ***
R1:x1 -2.105411 0.241102 -8.7325 < 2.2e-16 ***
R1:x2 2.180576 0.253462 8.6032 < 2.2e-16 ***
R1:x3 -2.174328 0.248413 -8.7529 < 2.2e-16 ***
R1:x4 2.451379 0.256025 9.5748 < 2.2e-16 ***
R1:w1 0.962783 0.253709 3.7948 0.0001477 ***
R1:w2 -1.171413 0.250832 -4.6701 3.01e-06 ***
R2:(Intercept) 9.850530 0.135920 72.4731 < 2.2e-16 ***
R2:z1 2.033139 0.039345 51.6751 < 2.2e-16 ***
R2:z2 -1.977861 0.039253 -50.3879 < 2.2e-16 ***
R2:z3 2.019361 0.041748 48.3697 < 2.2e-16 ***
R2:z4 -1.970772 0.040258 -48.9540 < 2.2e-16 ***
R2:w1 -0.943152 0.037320 -25.2719 < 2.2e-16 ***
R2:w2 1.072715 0.039853 26.9166 < 2.2e-16 ***
log(s1) 1.646871 0.041190 39.9822 < 2.2e-16 ***
log(s2) 0.046830 0.052730 0.8881 0.3744811
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Standard errors estimated from inverse Hessian
Log-likelihood: -3313.95
AIC: 6659.9
No. observations: 1500
Call:
ultimatum(formulas = f1, data = data_ult, maxOffer = 15, s1 = 5,
s2 = 1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
R1:(Intercept) 5.021579 0.241452 20.7974 < 2.2e-16 ***
R1:x1 -2.049177 0.224564 -9.1252 < 2.2e-16 ***
R1:x2 2.125036 0.236164 8.9981 < 2.2e-16 ***
R1:x3 -2.102711 0.229149 -9.1762 < 2.2e-16 ***
R1:x4 2.383386 0.235176 10.1345 < 2.2e-16 ***
R1:w1 0.922013 0.241195 3.8227 0.000132 ***
R1:w2 -1.154102 0.238351 -4.8420 1.285e-06 ***
R2:(Intercept) 9.970120 0.044891 222.0939 < 2.2e-16 ***
R2:z1 2.014641 0.034476 58.4357 < 2.2e-16 ***
R2:z2 -2.002824 0.034012 -58.8864 < 2.2e-16 ***
R2:z3 2.013207 0.036131 55.7201 < 2.2e-16 ***
R2:z4 -1.975776 0.035034 -56.3961 < 2.2e-16 ***
R2:w1 -0.956518 0.032910 -29.0651 < 2.2e-16 ***
R2:w2 1.076160 0.035012 30.7369 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Standard errors estimated from inverse Hessian
Fixed terms:
log(s1) log(s2)
1.609438 0.000000
Log-likelihood: -3718.144
AIC: 7464.287
No. observations: 1500
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.