boot_coef | R Documentation |
The function boot_coef()
plots in one or multiple pages the results from a boostrap generated by the function BayesianBoot()
, NonParamatricBoot
or nonpar_boot().
The function boot_coef_one()
plots a single parameter.
boot_coef(x, terms = NULL, hist.col = "black",
hist.fill = "white", dens.fill = "#FF6666",
alpha = 0.2, nrow = NULL, ncol = NULL,
plots.per.page = 9, one.by.one = FALSE, title, ...)
boot_coef_one(x, par = 1, rug = TRUE, alpha = 0.2, hist.col = "black",
hist.fill = "white", line.col = "gray",
dens.fill = "#FF6666", title, ...)
x |
a |
terms |
which terms to plot (default NULL means all terms |
par |
which parameter to plot |
hist.col |
colour of the border histogram |
hist.fill |
the colour of the histogram |
dens.fill |
the colour of the density estimate |
alpha |
transparity constant |
nrow |
how namy rows |
ncol |
how many columns |
plots.per.page |
the maxiimum plots per page |
one.by.one |
whether single plots |
rug |
whether rug is required for |
line.col |
the vertical line colour for |
title |
the title |
... |
for more argument |
The function plots in one ore multiple pages the results from a boostrap simulation
Greates a ggplot object
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
term.plot
data(aids)
a <- gamlss(y ~ pb(x) + qrt, data = aids, family = NBI)
registerDoParallel(cores = 2)
B1 <- BayesianBoot(a, B=100)
stopImplicitCluster()
boot_coef(B1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.