resid_index | R Documentation |
The function resid_index()
is plotting the residuals of a GAMLSS fitted model (or any other suitable standardised residual) against the observation number index.
The function resid_mu()
plots the residuals against fitted values for mu
.
The function resid_median()
plots the residuals against fitted median values.
The function resid_param()
plots the residuals against any of the GAMLSS fitted parameters, mu
, sigma
, nu
, or tau
.
The function resid_quantile()
plots the residuals against any fitted quantile.
The function resid_xvar()
plots the residuals against an explanatory term.
The function resid_plots()
produces a plot similar to the one that the function plot()
produce for a GAMLSS model in package gamlss. This is, four plots: a) resid_index()
(b) resid_mu()
, (c) resid_density()
and (d) resid_qqplot()
.
Residuals above (or below) certain specified value are identified.
resid_index(obj, resid, plot = TRUE, value = 2, title, annotate = TRUE,
no.lines = FALSE)
resid_mu(obj, resid, plot = TRUE, value = 2, title, annotate = TRUE)
resid_median(obj, resid, plot = TRUE, value = 3, title,
annotate = TRUE)
resid_param(obj, param = c("mu", "sigma", "nu", "tau"), title,
line.col = "darkred", point.col = "steelblue4",
point.shape = 20)
resid_quantile(obj, quantile = 0.5, title, newdata,
line.col = "darkred", point.col = "steelblue4",
point.shape = 20)
resid_plots(obj, theme = c("original", "ts", "new", "ecdf"), value = 3)
resid_xvar(obj, xvar, plot = TRUE, value = 2, title, annotate = TRUE)
obj |
a GAMLSS object |
resid |
or any other suitable standardised residual vector. |
xvar |
a continuous explanatory variable |
plot |
whether to plot the result |
param |
which GAMLSS parameter |
value |
the cut off value for the identification of very large or very small residuals |
annotate |
whether the threshold annotation should appear or not |
line.col |
the colour of the line |
point.col |
the colour of the points |
point.shape |
the shape of the points |
title |
a title of the plot if needed |
theme |
what type of plots should |
no.lines |
this option allows to hide the horizontal lines so the resulting gg-plot can be used later with say |
newdata |
whether the evaluation should be in newdata or the old data points |
quantile |
which quantile? default the median (0.50). |
A plot of the residuals is returned.
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
gamlss
, plot.gamlss
library(ggplot2)
data(rent)
r1<-gamlss(R~pb(Fl)+pb(A)+H+loc,family=GA,data=rent)
resid_index(r1)
resid_mu(r1)
resid_median(r1)
resid_param(r1)
resid_quantile(r1)
resid_xvar(r1, A)
resid_plots(r1)
resid_index(r1, no.lines=TRUE)+facet_wrap(~ cut_number(rent$A, 6))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.