| prof_term | R Documentation | 
Plotting the profile deviance of a fitted term in GAMLSS
prof_term(model = NULL, criterion = c("GD", "GAIC"), 
      penalty = 2.5,  from = NULL, to = NULL, 
      step = NULL, length = 7, xlabel = NULL, plot = TRUE, 
      perc = 95, start.prev = TRUE, line.col = "darkgreen", 
      dash.line.type = 3, dash.line.size = 0.8, text.size = 5, title)
| model | a GAMLSS fitted model | 
| criterion | whether Global deviance or GAIC | 
| penalty | the penalty k for GAIC | 
| from | start from | 
| to | finish at | 
| step | using step | 
| length | if the  | 
| xlabel | if a x label is required | 
| plot | whether tto plot the function | 
| perc | what percentage confidence interval is required | 
| start.prev | whether to start from the previous fitted model parameters values or not (default is TRUE) | 
| line.col | the colour of the plotting line | 
| dash.line.type | the type of verical dash line for CI's | 
| dash.line.size | The size of the dash lines | 
| text.size | the size of text | 
| title | the title | 
This function is the ggplot2 version of the original prof.term() function.
creates a plot
Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
prof.term
data(aids)
# fitting a linear model
gamlss(y~x+qrt,family=NBI,data=aids)
# testing the linear beta parameter
mod<-quote(gamlss(y ~ offset(this * x) + qrt, data = aids, family = NBI))
prof_term(mod, from = .06, to=0.13)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.