R/calibrate.plot.R

Defines functions calibrate.plot quantile.rug

Documented in calibrate.plot quantile.rug

#' Quantile rug plot
#' 
#' Marks the quantiles on the axes of the current plot.
#' 
#' @param x A numeric vector.
#'
#' @param prob The quantiles of x to mark on the x-axis.
#' 
#' @param ... Additional optional arguments to be passed onto 
#' \code{\link[graphics]{rug}}
#' 
#' @return No return values.
#' 
#' @author Greg Ridgeway \email{gregridgeway@@gmail.com}.
#' 
#' @seealso \code{\link[graphics:plot.default]{plot}}, \code{\link[stats]{quantile}},
#' \code{\link[base]{jitter}}, \code{\link[graphics]{rug}}.
#' 
#' @keywords aplot
#' 
#' @export quantile.rug
#' 
#' @examples
#' x <- rnorm(100)
#' y <- rnorm(100)
#' plot(x, y)
#' quantile.rug(x)
quantile.rug <- function(x, prob = 0:10/10, ...) {
  quants <- quantile(x[!is.na(x)], prob = prob)
  if(length(unique(quants)) < length(prob)) {
    quants <- jitter(quants)
  }
  rug(quants, ...)
}


#' Calibration plot
#' 
#' An experimental diagnostic tool that plots the fitted values versus the
#' actual average values. Currently only available when
#' \code{distribution = "bernoulli"}.
#' 
#' Uses natural splines to estimate E(y|p). Well-calibrated predictions imply
#' that E(y|p) = p. The plot also includes a pointwise 95% confidence band.
#' 
#' @param y The outcome 0-1 variable.
#' 
#' @param p The predictions estimating E(y|x).
#' 
#' @param distribution The loss function used in creating \code{p}.
#' \code{bernoulli} and \code{poisson} are currently the only special options.
#' All others default to squared error assuming \code{gaussian}.
#' 
#' @param replace Determines whether this plot will replace or overlay the
#' current plot. \code{replace=FALSE} is useful for comparing the calibration
#' of several methods.
#' 
#' @param line.par Graphics parameters for the line.
#' 
#' @param shade.col Color for shading the 2 SE region. \code{shade.col=NA}
#' implies no 2 SE region.
#' 
#' @param shade.density The \code{density} parameter for \code{\link{polygon}}.
#' 
#' @param rug.par Graphics parameters passed to \code{\link{rug}}.
#' 
#' @param xlab x-axis label corresponding to the predicted values.
#' 
#' @param ylab y-axis label corresponding to the observed average.
#' 
#' @param xlim,ylim x- and y-axis limits. If not specified te function will
#' select limits.
#' 
#' @param knots,df These parameters are passed directly to
#' \code{\link[splines]{ns}} for constructing a natural spline smoother for the
#' calibration curve.
#' 
#' @param ... Additional optional arguments to be passed onto 
#' \code{\link[graphics:plot.default]{plot}}
#' 
#' @return No return values.
#' 
#' @author Greg Ridgeway \email{gregridgeway@@gmail.com}
#' 
#' @references 
#' J.F. Yates (1982). "External correspondence: decomposition of
#' the mean probability score," Organisational Behaviour and Human Performance
#' 30:132-156.
#' 
#' D.J. Spiegelhalter (1986). "Probabilistic Prediction in Patient Management
#' and Clinical Trials," Statistics in Medicine 5:421-433.
#' @keywords hplot
#' 
#' @export
#' 
#' @examples
#' # Don't want R CMD check to think there is a dependency on rpart
#' # so comment out the example
#' #library(rpart)
#' #data(kyphosis)
#' #y <- as.numeric(kyphosis$Kyphosis)-1
#' #x <- kyphosis$Age
#' #glm1 <- glm(y~poly(x,2),family=binomial)
#' #p <- predict(glm1,type="response")
#' #calibrate.plot(y, p, xlim=c(0,0.6), ylim=c(0,0.6))
calibrate.plot <- function(y, p, distribution = "bernoulli", replace = TRUE,
                           line.par = list(col = "black"), 
                           shade.col = "lightyellow",
                           shade.density = NULL, rug.par = list(side = 1),
                           xlab = "Predicted value", ylab = "Observed average",
                           xlim = NULL, ylim = NULL, knots = NULL, df = 6, ...) 
  {
  
  # Sanity check
  if (!requireNamespace("splines", quietly = TRUE)) {
    stop("The splines package is needed for this function to work. Please ",
         "install it.", call. = FALSE)
  }
  
  data <- data.frame(y = y, p = p)
  
  # Check spline parameters
  if(is.null(knots) && is.null(df)) {
    stop("Either knots or df must be specified")
  }
  if((df != round(df)) || (df < 1)) {
    stop("df must be a positive integer")
  }
  
  # Check distribution
  if(distribution == "bernoulli") {
    family1 <- binomial
  } else if(distribution == "poisson") {
    family1 <- poisson
  } else {
    family1 <- gaussian
  }
  
  # Fit a GLM using natural cubic splines
  gam1 <- glm(y ~ splines::ns(p, df = df, knots = knots), data = data,
              family = family1)
  
  # Plotting data
  x <- seq(min(p), max(p), length = 200)
  yy <- predict(gam1, newdata = data.frame(p = x), se.fit = TRUE, 
                type = "response")
  x <- x[!is.na(yy$fit)]
  yy$se.fit <- yy$se.fit[!is.na(yy$fit)]
  yy$fit <- yy$fit[!is.na(yy$fit)]
  
  # Plotting parameters
  if(!is.na(shade.col)) {
    se.lower <- yy$fit - 2 * yy$se.fit
    se.upper <- yy$fit + 2 * yy$se.fit
    if(distribution == "bernoulli") {
      se.lower[se.lower < 0] <- 0
      se.upper[se.upper > 1] <- 1
    }
    if(distribution == "poisson") {
      se.lower[se.lower < 0] <- 0
    }
    if(is.null(xlim)) {
      xlim <- range(se.lower, se.upper, x)
    }
    if(is.null(ylim)) {
      ylim <- range(se.lower, se.upper, x)
    }
  }
  else {
    if(is.null(xlim)) {
      xlim <- range(yy$fit,x)
    }
    if(is.null(ylim)) {
      ylim <- range(yy$fit,x)
    }
  }
  
  # Construct plot
  if(replace) {
    plot(0, 0, type = "n", xlab = xlab, ylab = ylab, xlim = xlim, ylim = ylim,
         ...)
  }
  if(!is.na(shade.col)) {
    polygon(c(x, rev(x), x[1L]), c(se.lower, rev(se.upper), se.lower[1L]),
            col = shade.col, border = NA, density = shade.density)
  }
  lines(x, yy$fit, col = line.par$col)
  quantile.rug(p, side = rug.par$side)
  abline(0, 1, col = "red")
  
}

Try the gbm package in your browser

Any scripts or data that you put into this service are public.

gbm documentation built on June 28, 2024, 9:07 a.m.