Nothing
#' Solve continuous-time Lyapunov equations
#'
#' \code{clyap} solve the continuous-time Lyapunov equations
#' \deqn{BX + XB' + C=0}
#' Using the Bartels-Stewart algorithm with Hessenberg–Schur
#' decomposition. Optionally the Hessenberg-Schur
#' decomposition can be returned.
#'
#' @param B Square matrix
#' @param C Square matrix
#' @param Q Square matrix, the orthogonal matrix used
#' to transform the original equation
#' @param all logical
#'
#' @return The solution matrix \code{X} if \code{all = FALSE}. If
#' \code{all = TRUE} a list with components \code{X}, \code{B}
#' and \code{Q}. Where \code{B} and \code{Q} are the
#' Hessenberg-Schur form of the original matrix \code{B}
#' and the orthogonal matrix that performed the transformation.
#'
#' @details
#'
#' If the matrix \code{Q} is set then the matrix \code{B}
#' is assumed to be in upper quasi-triangular form
#' (Hessenberg-Schur canonical form),
#' as required by LAPACK subroutine \code{DTRSYL} and \code{Q} is
#' the orthogonal matrix associated with the Hessenberg-Schur form
#' of \code{B}.
#' Usually the matrix \code{Q} and the appropriate form of \code{B}
#' are obtained by a first call to \code{clyap(B, C, all = TRUE)}
#'
#'
#' \code{clyap} uses lapack subroutines:
#'
#' * \code{DGEES}
#' * \code{DTRSYL}
#' * \code{DGEMM}
#' @examples
#' B <- matrix(data = rnorm(9), nrow = 3)
#' ## make B negative diagonally dominant, thus stable:
#' diag(B) <- - 3 * max(B)
#' C <- diag(runif(3))
#' X <- clyap(B, C)
#' ## check X is a solution:
#' max(abs(B %*% X + X %*% t(B) + C))
#' @useDynLib gclm
#' @export
clyap <- function(B, C, Q = NULL, all = FALSE) {
N <- ncol(B)
JOB <- 0
if (is.null(Q)) Q <- matrix(nrow = N, ncol = N, 0)
else JOB <- 1
WK <- rep(0, 5 * N)
out <- .Fortran('DGELYP', as.integer(N),
as.double(B), as.double(-C),
as.double(Q),
as.double(WK),
as.integer(0),
as.integer(JOB), as.integer(0),
PACKAGE = "gclm")
if (all){
list(B = matrix(out[[2]], N, N),
X = matrix(out[[3]], N, N),
Q = matrix(out[[4]], N, N),
INFO = out[[6]] )
}else{
matrix(out[[3]], N, N)
}
}
#' l1 penalized loss estimation for GCLM
#'
#' Estimates a sparse continuous time Lyapunov
#' parametrization of a covariance matrix using a lasso
#' (L1) penalty.
#'
#' @param Sigma covariance matrix
#' @param B initial B matrix
#' @param C diagonal of initial C matrix
#' @param C0 diagonal of penalization matrix
#' @param loss one of "loglik" (default) or "frobenius"
#' @param eps convergence threshold
#' @param alpha parameter line search
#' @param maxIter maximum number of iterations
#' @param lambda penalization coefficient for B
#' @param lambdac penalization coefficient for C
#' @param job integer 0,1,10 or 11
#' @return for \code{gclm}: a list with the result of the optimization
#' @details
#' \code{gclm} performs proximal gradient descent for the optimization problem
#' \deqn{argmin L(\Sigma(B,C)) + \lambda \rho(B) + \lambda_C ||C - C0||_F^2}
#' subject to \eqn{B} stable and \eqn{C} diagonal, where \eqn{\rho(B)} is the l1 norm
#' of the off-diagonal element of \eqn{B}.
#' @useDynLib gclm
#' @examples
#' x <- matrix(rnorm(50*20),ncol=20)
#' S <- cov(x)
#'
#' ## l1 penalized log-likelihood
#' res <- gclm(S, eps = 0, lambda = 0.1, lambdac = 0.01)
#'
#' ## l1 penalized log-likelihood with fixed C
#' res <- gclm(S, eps = 0, lambda = 0.1, lambdac = -1)
#'
#' ## l1 penalized frobenius loss
#' res <- gclm(S, eps = 0, lambda = 0.1, loss = "frobenius")
#' @export
gclm <- function(Sigma, B = - 0.5 * diag(ncol(Sigma)),
C = rep(1, ncol(Sigma)),
C0 = rep(1, ncol(Sigma)),
loss = "loglik",
eps = 1e-2,
alpha = 0.5,
maxIter = 100,
lambda = 0,
lambdac = 0,
job = 0){
if (loss == "loglik"){
out <- .Fortran("GCLMLL",as.integer(ncol(Sigma)), as.double(Sigma),
as.double(B),
as.double(C), as.double(C0),
as.double(lambda), as.double(lambdac),
as.double(eps),
as.double(alpha),
as.integer(maxIter),
as.integer(job),
PACKAGE = "gclm")
}
if (loss == "frobenius"){
out <- .Fortran("GCLMLS",as.integer(ncol(Sigma)), as.double(Sigma),
as.double(B),
as.double(C), as.double(C0),
as.double(lambda), as.double(lambdac),
as.double(eps),
as.double(alpha),
as.integer(maxIter),
as.integer(job),
PACKAGE = "gclm")
}
names(out) <- c("N", "Sigma", "B", "C", "C0", "lambda", "lambdac",
"diff", "loss",
"iter", "job")
out$Sigma <- matrix(nrow = out$N, out$Sigma)
out$B <- matrix(nrow = out$N, out$B)
return(out)
}
#' @rdname gclm
#' @param lambdas sequence of lambda
#' @param ... additional arguments passed to \code{gclm}
#' @return for \code{gclm.path}: a list of the same length of
#' \code{lambdas} with the results of the optimization for
#' the different \code{lambda} values
#' @details \code{gclm.path} simply calls iteratively \code{gclm}
#' with different \code{lambda} values. Warm start is used, that
#' is in the i-th call to \code{gclm} the \code{B} and \code{C}
#' matrices are initialized as the one obtained in the (i-1)th
#' call.
#' @export
gclm.path <- function(Sigma, lambdas = NULL,
B = - 0.5 * diag(ncol(Sigma)),
C = rep(1, ncol(Sigma)),
...){
if (is.null(lambdas)) {
lambdas = seq(max(diag(Sigma)) / 2, 0, length = 10)
}
results <- list()
for (i in 1:length(lambdas)){
results[[i]] <- gclm(Sigma, B = B, C = C,
lambda = lambdas[i], ...)
B <- results[[i]]$B
C <- results[[i]]$C
}
return(results)
}
#' Recover lower triangular GCLM
#'
#' Recover the only lower triangular stable matrix B such that
#' \code{Sigma} (\eqn{\Sigma})
#' is the solution of the associated continuous Lyapunov equation:
#' \deqn{B\Sigma + \Sigma B' + C = 0}
#' @param Sigma covariance matrix
#' @param P the inverse of the covariance matrix
#' @param C symmetric positive definite matrix
#'
#' @return A stable lower triangular matrix
#'
#' @export
gclm.lowertri <- function(Sigma,
P = solve(Sigma),
C = diag(nrow = nrow(Sigma))){
p <- nrow(Sigma)
l <- listInverseBlocks(Sigma)
blong <- anti_t(0.5 * C %*% P)[ upper.tri(Sigma)]
blong <- blong[length(blong):1]
b <- blong[1:(p-1)]
w <- l[[1]] %*% b
t <- p
for (i in 2:length(l)){
b <- blong[t:(t + p - i - 1)]
t <- t + p - i
AA <- matrix(nrow = length(b), ncol = length(w), 0)
for (j in (i+1):p){
for (k in 1:(i-1)){
ix <- (k - 1) * p - (k - 1) * k / 2 + (i - k)
AA[j - i, ix] <- P[k, j]
}
}
b <- b + tcrossprod(AA, t(w) )
w <- c(w, l[[i]] %*% b)
}
W <- matrix(nrow = p, ncol = p, 0)
W[upper.tri(W)] <- w[length(w) : 1]
W <- anti_t(W)
W <- W - t(W)
B <- (W - 0.5 * C) %*% P
B[upper.tri(B)] <- 0
return(B)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.